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ABSTRACT 
 

  In the near field region, optical antennas can generate local hot spots with high energy density. It can be 
very useful in increasing the photon-matter interactions for bio-sensing applications. There are several important 
bio-molecules having signature frequency (vibrational resonance) matching the mid infrared region of the optical 
spectrum. Thus mid-infrared antenna integrated with Quantum cascade laser (QCL) is highly desirable as it is 
currently considered to be one of the most efficient mid-infrared laser sources with a huge gamut of commercial 
applications. Here, we present a novel metal-dielectric-metal (MDM) based plasmonic nanorod antenna integrated 
on the facet of a room temperature working Quantum Cascade Laser. Simulations showed that at an optimized SiO2 
thickness of 20nm, the antenna can generate a local electric field with intensity 500 times higher than the incident 
field intensity. Further, it can increase the number of regions with local hot spots due to a higher number of 
geometrical singularities or sharp edges present in the MDM structure. This feature can be extremely useful, 
especially for bio-sensing applications. All device structures have been optimized based on 3d finite-difference time-
domain (FDTD) numerical simulations. The antenna was fabricated on the facet of QCL using focused ion beam 
(FIB). The integrated plasmonic QCL has been measured using an apertureless mid-infrared near field scanning 
optical microscopy (a-NSOM). The measurement set-up is based on an inverted microscope coupled with a 
commercially available Atomic Forced Microscopy (AFM). We have experimentally found that such integrated 
nano antenna can generate a very narrow optical spot size, much below the diffraction limit, with high power density 
that matches well with the simulation results.    

Key words: Bio-sensing, Focused ion beam milling, Field enhancement, Near-field imaging, Optical antenna, 
Plasmonics, Quantum Cascade Laser, Surface plasmon resonance. 

1. INTRODUCTION 

At the interface between two mediums having opposing signs of dielectric susceptibility (eg. Metal-
dielectric), light can generate a collective motion of conductive electrons, called by surface plasmons (SP)1. The 
principle of surface plasmons has been extensively applied in many novel applications for example extraordinary 
optical transmission2,3,4, label-free measurements of bio-molecular sensing 5,6, drug discovery 7,8, surface plasmon 
interference lithography 9and spectroscopic applications 10.   

By solving the Maxwell’s equation in a planar film, the SP dispersion relationship is found to be: 
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Where, k is the wave vector of the electromagnetic field propagation parallel to the interface between metal 

and dielectric, ω is the angular frequency of the incident field. εeff  is the effective dielectric constant given by: 
 
    ߳௘௙௙ ൌ ఢ೏ఢ೘ఢ೏ାఢ೘                                                (2) 

 
Where, εm and εd represent the dielectric constants for metal and dielectric respectively.  
As formula (1) suggests, the angular momentum of SP is greater than the free space momentum of incident 

photon and thus exciting SP at the metal-dielectric interface requires special care. Previously, it has been achieved 
using two different coupling techniques – prism coupler 1 or grating coupler11.  

The familiar concepts of geometrical optics in the macroscopic world do not adequately describe light-
particle interaction when the particle size becomes comparable to the wavelength of the incident light. In such 
condition, rigorous optical theories such as Mie theory 12 address the solution of Maxwell equation with full 
complexity of light-particle interaction.  

 Mie theory suggests that a collective charge oscillation i.e. SP gets induced when an incident 
electromagnetic field interacts with the target nano particle. Moreover the oscillating frequency matches with the 
frequency of incident field. For such small particle size, SP is dipolar13. It induces the charge accumulation process 
at the two ends of the nano particle with opposite polarity. The accumulated charge generates strong electric field in 
the near field region of the nano particle due to coulomb interaction. Such phenomena expand the realm of 
geometric optics to focus radiant visible and infrared light down to nanometric length scale much smaller compared 
to its wavelength.  

In the past decade, there has been considerable amount of research on optical antennas due to its novel 
photonic application including chemical14,15 and thermal sensors16,17, near-field microscopy18,19, nanoscale 
photodetectors20 and plasmonic devices21,22,23. Like RF antenna, optical antennas are resonant structures responding 
to specific wavelengths through both the geometrical and material characteristics of the antenna as well as the 
surrounding environments24,25,26. Though both optical and RF have fundamental application in controlling radiation 
pattern, there do exist some basic differences. For example, radio frequency (RF) antenna designs27 wholly focus on 
optimization of far-field characteristics in order to obtain better long distance transmission and reception 
performance. In contrast optical antenna emphasize on the near field behavior because the enhancement decays 
rapidly with distance. Further, the primary challenge of dimensional mismatch between the wavelength and the 
emitter/receiver (e.g. molecules) for optical antenna is met by improvement in near-field coupling instead of using a 
feed line as in the RF case. 

Significant works related to optical antenna in visible spectrum28 has been previously demonstrated. 
Recently there has been an added interests in infrared (IR) optical antenna due to relatively ease of structural 
fabrication compared to visible range, and more importantly the great technological need for its potential 
applications in chemical spectroscopy, remote sensing, ultrafast IR  and THz transient detection29,30. Many of the 
demonstrated infrared optical antennas were designed based on an external IR laser source31,32,33.  Integration of 
optical antenna along with an IR source was far-reach for a long time due to the absence of any efficient laser source 
in this optical regime (2-20 µm) till the field of Quantum Cascade Laser matured significantly in the last decade. 
Since its first demonstration34 in 1994, QCL – a unipolar semiconductor laser35 which works on the principle of 
intersubband transitions, showed watt level power performance at room temperature36. Group lead by Fredrico 
Capasso at Harvard University, first demonstrated a fully integrated mid-infrared optical antenna based on QCL and 
showed a strong near field localization37,38,39,40,41,42. Such optical antenna showed great promise in microscopic 
application below diffraction limit. The usefulness can be extended further to chemical and bio sensing application if 
composite material (multilayered) is used instead of single metal as optical antenna element as it paves the way to 
functionalize different layers. 

Here, we demonstrate a metal-dielectric-metal (MDM) based nanorod antenna design, where surface 
plasmon waves at two metal interfaces get coupled by the sandwiched dielectric medium. In comparison to a metal 
nanorod antenna, such a design promises stronger light enhancement. Furthermore, as a result of higher number of 
geometrical singularities or sharp edges present in the MDM structure, it can increase the number of regions with 
local hot spots making it extremely useful for bio-sensing applications43,44. Moreover the design is superior to a 
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