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ABSTRACT

In the near field region, optical antennas can generate local hot spots with high energy density. It can be
very useful in increasing the photon-matter interactions for bio-sensing applications. There are several important
bio-molecules having signature frequency (vibrational resonance) matching the mid infrared region of the optical
spectrum. Thus mid-infrared antenna integrated with Quantum cascade laser (QCL) is highly desirable as it is
currently considered to be one of the most efficient mid-infrared laser sources with a huge gamut of commercial
applications. Here, we present a novel metal-dielectric-metal (MDM) based plasmonic nanorod antenna integrated
on the facet of a room temperature working Quantum Cascade Laser. Simulations showed that at an optimized SiO,
thickness of 20nm, the antenna can generate a local electric field with intensity 500 times higher than the incident
field intensity. Further, it can increase the number of regions with local hot spots due to a higher number of
geometrical singularities or sharp edges present in the MDM structure. This feature can be extremely useful,
especially for bio-sensing applications. All device structures have been optimized based on 3d finite-difference time-
domain (FDTD) numerical simulations. The antenna was fabricated on the facet of QCL using focused ion beam
(FIB). The integrated plasmonic QCL has been measured using an apertureless mid-infrared near field scanning
optical microscopy (a-NSOM). The measurement set-up is based on an inverted microscope coupled with a
commercially available Atomic Forced Microscopy (AFM). We have experimentally found that such integrated
nano antenna can generate a very narrow optical spot size, much below the diffraction limit, with high power density
that matches well with the simulation results.
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1. INTRODUCTION

At the interface between two mediums having opposing signs of dielectric susceptibility (eg. Metal-
dielectric), light can generate a collective motion of conductive electrons, called by surface plasmons (SP)'. The
principle of surface plasmons has been extensively applied in many novel applications for example extraordinary
optical transmission”, label-free measurements of bio-molecular sensing *°, drug discovery * surface plasmon
interference lithography *and spectroscopic applications '°.

By solving the Maxwell’s equation in a planar film, the SP dispersion relationship is found to be:
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k = % \ Eeff (1

Where, k is the wave vector of the electromagnetic field propagation parallel to the interface between metal
and dielectric, o is the angular frequency of the incident field. .t is the effective dielectric constant given by:

€d€m

€eff = (2)
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Where, &, and g4 represent the dielectric constants for metal and dielectric respectively.

As formula (1) suggests, the angular momentum of SP is greater than the free space momentum of incident
photon and thus exciting SP at the metal-dielectric interface requires special care. Previously, it has been achieved
using two different coupling techniques — prism coupler ' or grating coupler''.

The familiar concepts of geometrical optics in the macroscopic world do not adequately describe light-
particle interaction when the particle size becomes comparable to the wavelength of the incident light. In such
condition, rigorous optical theories such as Mie theory '* address the solution of Maxwell equation with full
complexity of light-particle interaction.

Mie theory suggests that a collective charge oscillation i.e. SP gets induced when an incident
electromagnetic field interacts with the target nano particle. Moreover the oscillating frequency matches with the
frequency of incident field. For such small particle size, SP is dipolar'. It induces the charge accumulation process
at the two ends of the nano particle with opposite polarity. The accumulated charge generates strong electric field in
the near field region of the nano particle due to coulomb interaction. Such phenomena expand the realm of
geometric optics to focus radiant visible and infrared light down to nanometric length scale much smaller compared
to its wavelength.

In the past decade, there has been considerable amount of research on optical antennas due to its novel
photonic application including chemical'*'"> and thermal sensors'®'’, near-field microscopy'™'’, nanoscale
photodetectors® and plasmonic devices”***. Like RF antenna, optical antennas are resonant structures responding
to specific wavelengths through both the geometrical and material characteristics of the antenna as well as the
surrounding environments®****%. Though both optical and RF have fundamental application in controlling radiation
pattern, there do exist some basic differences. For example, radio frequency (RF) antenna designs”’ wholly focus on
optimization of far-field characteristics in order to obtain better long distance transmission and reception
performance. In contrast optical antenna emphasize on the near field behavior because the enhancement decays
rapidly with distance. Further, the primary challenge of dimensional mismatch between the wavelength and the
emitter/receiver (e.g. molecules) for optical antenna is met by improvement in near-field coupling instead of using a
feed line as in the RF case.

Significant works related to optical antenna in visible spectrum® has been previously demonstrated.
Recently there has been an added interests in infrared (IR) optical antenna due to relatively ease of structural
fabrication compared to visible range, and more importantly the great technological need for its potential
applications in chemical spectroscopy, remote sensing, ultrafast IR and THz transient detection®°. Many of the
demonstrated infrared optical antennas were designed based on an external IR laser source’'***. Integration of
optical antenna along with an IR source was far-reach for a long time due to the absence of any efficient laser source
in this optical regime (2-20 um) till the field of Quantum Cascade Laser matured significantly in the last decade.
Since its first demonstration™ in 1994, QCL — a unipolar semiconductor laser”> which works on the principle of
intersubband transitions, showed watt level power performance at room temperature’®. Group lead by Fredrico
Capasso at Harvard University, first demonstrated a fully integrated mid-infrared optical antenna based on QCL and
showed a strong near field localization®”****4'42 Such optical antenna showed great promise in microscopic
application below diffraction limit. The usefulness can be extended further to chemical and bio sensing application if
composite material (multilayered) is used instead of single metal as optical antenna element as it paves the way to
functionalize different layers.

Here, we demonstrate a metal-dielectric-metal (MDM) based nanorod antenna design, where surface
plasmon waves at two metal interfaces get coupled by the sandwiched dielectric medium. In comparison to a metal
nanorod antenna, such a design promises stronger light enhancement. Furthermore, as a result of higher number of
geometrical singularities or sharp edges present in the MDM structure, it can increase the number of regions with
local hot spots making it extremely useful for bio-sensing applications***. Moreover the design is superior to a
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single metal nanorod because it opens up the possibility of use it for many bio-sensing applications where different
probe molecules can be attached to different layers of the same nanorod®’.

2. SIMULATIONS

To analyze the performance of our MDM antenna compared to metal nanorod antenna, we first simulated
the structure using commercially available 3d FDTD software, Lumerical. All material data used in the simulation,
other than the laser region, is from ref 46. The refractive index of the laser material is chosen to be 3.2, which is the
weighted average of the refractive index of the active region,Ing44Algs6As/Ing ¢Gag 4As. The simulated structure has
a 100nm buffer silicon dioxide followed by the metal-dielectric-metal antenna. A schematic diagram of the
simulated structure is shown in the inset of Figure 1. An optical TM polarized plane wave with central wavelength
around 5.97um and it is used as the source for all performed FDTD simulations.
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Figure 1 - (color online) FDTD simulation showing the peak intensity enhancement for varying the silicon
dioxide thickness while keeping the total thickness of the structure to be 170nm. Inset: Schematic diagram of
the simulation structure, where the “A” represents the position of the sampling point.

At resonance, surface charge is accumulated at the end of each nanorod and it is maximized at the gap between
two closely placed nanorods due to capacitive coupling. The accumulated charge leads to large electric field
intensity enhancement at its vicinity. Peak electric field enhancement is plotted against varying lengths of the
nanorod antenna (Figure 1). In the simulations, we varied the SiO, thickness from 0, 5, 10, 20, 30 to 50 nm, while
keeping the total structure thickness to be 170nm. It can be seen that by increasing the SiO, thickness from 5 to
10nm, the average intensity is enhanced. It is maximized at a thickness of 20nm and decreases at an oxide thickness
of 30nm.

The physics behind the MDM single nanorod design can be well understood by an analogous LC circuit®’,
where each metal layer is represented by identical inductors (L) and the sandwiched dielectric between them as a
capacitor (C). Also two of the nanorods create a capacitor, C, outside the dielectric region. In Figure 2, a schematic
diagram of the equivalent optical circuit is shown. All the optical circuit elements are in parallel and they form a
coupled LC circuit with a resonance frequency o’ ~ (C+C,)/L.C.C,. When the input signal frequency is close to ®, a
strong resonance occurs. With a fixed lasing frequency, as used in our design, the thickness parameters can be tuned
with the resonance frequency, making the device uniquely different from the single metal nanorod antenna.
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Figure 2 - Schematic diagram showing the MDM single nanorod antenna and the equivalent optical circuit
for this structure.

At the resonant lengths, L=2.0um for the MDM antenna and L=2.05um for metal antenna, the absolute
value of electric field distribution along as the z-direction is plotted in Figure 3(a) - (b) respectively. The local
electric field enhancement can be a good figure of merit to compare the plasmon coupling efficiency between single
metal and MDM designs. The MDM nanorod antenna has nearly 3 times higher enhancement at the top metal
surface as compared to the single nanorod antenna (Figure 3 (c)). This field enhancement can be attributed to the
increased plasmon coupling efficiency in the presence of the sandwiched SiO..
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Figure 3 — (a) Schematic diagram showing MDM (Au/SiO,/Au; 75/20/75nm) nanorod antenna design and the
corresponding Ez field distribution at the top of the metal surface at a resonant length of 2.0um. (b)
Schematic diagram showing metal antenna design and the corresponding Ez field distribution at the top of
the metal surface at a resonant length of 2.0Sum.
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Figure 4 — Cross-sectional view of the MDM (Au/SiO,/Au; 70-20-70nm)nanorod antenna at resonant length of
2um, where the color bar represents the total E-field.

The local electric field distribution for the MDM antenna at resonant length of 2um is shown in Figure 4. The
picture shows the simulated hot spot regions where the electric field intensity gets enhanced.

From the simulation, the first order resonant length of the antenna is found to be L= (2.0£0.1) um, which
corresponds to a half integer multiple of the effective wavelength (A.g= A¢/ner). At resonant condition, the peak
intensity, at the two ends of the antenna, is found to be ~ 500 times the incident field intensity. A dipolar behavior
can still persist away from resonant conditions but it is expected to show increasingly asymmetric field distribution®'
until charge accumulation gets completely faded.

3. EXPERIMENTAL SET-UP

The resolution of Fourier transform infrared microcopy (FTIR) can’t exceed more than a few micrometer due to
diffraction limitation. In contrast, apertureless near-field scanning optical microscopy (a-NSOM) offers spatial
resolution up to few tens of nanometers and independent of any wavelength. The experimental set-up has been
illustrated in Figure 5. The tip of an atomic force microscope (AFM) scans parallel to the surface normal of the
antenna in tapping mode. Local electromagnetic field from the antenna structure is scattered by the AFM tip. Part of
it gets transmitted through the laser cavity and collected by a mercury-cadmium telluride (MCT) detector after beam
collimation.

The scattered signal possesses local field information. However, there is also scattering from the cantilever
which produces a huge background noise. This background has been overcome by modulating the distance between
the probe and the sample. At a small distance between the probe and sample, the apex signal gets hugely enhanced.
There is also a contribution to the modulated signal from many other scattering centers along the probe shaft. But
the signal contribution of the more distant ones can be effectively suppressed due to their rapid fading at larger
distance from the sample***°. Thus modulating the signal using AFM in tapping mode and then demodulating using
a lock-in amplifier can give an excellent background suppressed near-field signal.

Due to selection rule for intersubband transition, QCL emits TM polarized light’’, where direction of the
electric field is along the growth direction. The antenna structure is integrated on the facet of the QCL such that the
antenna axis coincides with the direction of laser polarization. Such condition makes the antenna resonant with the
incident laser frequency and enhances the near field. There is also a perturbation effect on the antenna near-field due
to the presence of probing tip, but it can be suppressed by using dielectric tip instead of metal tip as been suggested
inref 51.
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Figure 5 - Apertureless near-field optical microscope (a-NSOM) to probe near field intensity of optical
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AFM cantilever <

7

Figure 6 — Optical image showing the AFM tip scanning the facet of the QCL with integrated antenna.

The metal-dielectric-metal nanorods were fabricated on the facets of both an injectorless quantum cascade
(I-QCL) laser and a conventional QCL laser, working at room temperature. I- QCL is based on Ing3z¢sAlpe35AS
/ng ¢6Gag34. The core design is similar to an earlier letter’”, but modified with higher strain (~3%) and doping
density. It had already been reported that the I-QCL shows superior thermal performance with approximately 8
times lower rise in core temperature compared to conventional QCL with injector®. Conventional QCL is based on
Ing.44Aly s6As/Ing ¢Gag 4As with a core design as outlined in a previous letter’. The results described in this paper are
based on devices fabricated on conventional QCL. Although, the fundamental physics of devices based on I-QCL is
expected to be identical, other than the dimensional difference caused by difference in operation wavelengths of the
two lasers.
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The cleaved lasers were mounted on a c-mount and tested for current-voltage performance at room
temperature. After initial characterization to verify the operation of the lasers, one facet of the device was coated
with SiOy/Au/SiOy/Au (200/75nm/20nm/75nm) by ebeam evaporation using an Edwards FL 400. The single
nanorod antenna designs were then fabricated on the coated facet of the lasers using a Focused Ion beam (Hellios
FEI). Using the gallium ion beam at high voltage (30keV) and low current (48pA), a high precision of milling was
achieved. After the patterning, current-voltage characteristics didn’t incur any significant changes.

500nm

Figure 7 — (a) SEM image of the side view of Au-SiO,-Au (75/20/75nm) coupled nanorod antenna (b) Top
view of Au-SiO,-Au (75/20/75nm) single nanorod antenna. (¢) Side view of Au-SiO,-Au (75/20/75nm) single
nanorod antenna.

4. MEASUREMENT

Experimentally, nanorod on the laser facet was located using AFM scanning. Under laser in operation, the
AFM tip-scattered near-field response is recorded simultaneously with the topography. When in plane incident field
interacts with the MDM nanorod, conduction electrons in the metal respond with generating a surface Plasmon
wave. For composite material based antenna surface Plasmon waves get generated at each interface between metal
and dielectric.

During NSOM measurement, there are two components of scattered electric field, E, (in-plane) and E, (out-
of plane), interacts with the oscillating AFM probe. Unlike in phase dipole oscillation as in E, , the E, field
components at opposite ends of the nanorod oscillate out of phase with respect to each other by a relative angle ¢=n.
In Figure 8 (a) — (b), we show the near field image of Au-SiO,- Au (75/20/75nm) single nanorod antenna , with a
length of L=2.0um, integrated on the facet of room temperature working QCL. The simulated dipolar pattern in
Figure 8 (c) shows high near-field amplitude values at the rod extremities and zero amplitude at the center and it
matches with the experimental result. The simulated |E,| component (Figure 8 (c)) and |E,| of the electric field
(Figure 3(b)) shows clearly that we experimentally measure the E, instead of E, component of the electric field.
Unlike interferometric NSOM>>***7 a-NSOM can’t selectively measure two different components of E-field and
thus only the significant component of the near field is expected to be recorded. As been described in ref 51, the
electric field component parallel to the sample surface yields a relatively weak scattering signal compared to the
component perpendicular to it. It is due to difference between their effective polarizability. Thus probing out-of-
plane E, component ideally suited for such measurement.

We have found a more intense spot at the left corner of the nanorod compared to the right (Figure 8 (b)).
Similar observation has been reported in ref 32 and it is due to unsuppressed background noise. The line scans of
topography and near field are shown in Figure 8 (d) — (e). The image distortions, as seen Figure 8 (a) — (b), is due to
small sample drift and it is because the long acquisition time (~ 1 hour) for a-NSOM measurement.
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Figure 8 — (a) —(b) Topography and NSOM image of the Au-SiO,-Au single nanorod antenna integrated on
the facet of a room temperature working quantum cascade laser (¢) Simulated |E,| for the MDM nanorod
antenna. (d) — (e) Line scans for topography and NSOM measurement respectively (f) Comparison between
the |E,| near field intensity for single metal (170nm Au) and MDM nanorod antenna. It shows that MDM
antenna has > 3 times near field intensity enhancement.

5. DISCUSSION

During the NSOM measurement, the laser was operated at 1% duty cycle near the threshold voltage with an
average power output of 100pW. The near-field images of the antenna were recorded with high pixel resolution and
with a reduced scan speed of 0.1 line/s. The NSOM images show excellent agreement with the z-component of the
simulated near field distribution. The full widths at half maximum of the two peak intensities at the edge of the
antenna were found to be 550 and 600nm respectively (Figure 8). The spot is naturally confined along the short
direction of the antenna width of 100nm. The generated power flux at each hot spot is calculated as the total
operating laser power divided by number of spots and spot area. Neglecting any incurred optical losses the total
power flux is calculated to be approximately 0.8nW/nm” per hot spot. Even at 1% of this value, there will be enough
optical power to have an interaction with single molecules™. The measured peak intensities (Figure 8) at the two
ends of the antenna are different because of possible non-uniformity of the top gold surface caused by FIB milling.

In conclusion, we have demonstrated near field scanning optical microscopy of a single nanorod antenna
integrated on to the facet of a room temperature working QCL. The presented composite material based antenna
designs can generate a very small optical spot size with power flux density in the order of nW/nm®. Simulations
have confirmed that its multilayered design can significantly increase this intensity enhancement. Such high power
densities combined with multiple hot spot location on the same antenna will enable us to detect single molecule
based on their unique vibrational signature.
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