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1 Problem 7.3

There are three materials 1, 2, 3. The volume variables associated with them are x1, x2, x3. Constraints are
as follows

2x1 + 1x2 + 3x3 ≤ 100
x1 + x2 + x3 ≤ 60

x1 ≤ 40
x2 ≤ 30
x3 ≤ 20

x1, x2, x3 ≥ 0

The cost function is given as
Maximize 1000x1 + 1200x2 + 12000x3

2 Problem 7.8

I had already sent portions of the formulation in my email. Points denote the set of all points where each
point is a 2-tuple (xi, yi). Constraints of the linear program are as follows

∀i ∈ Points

ei ≥ axi + byi − c

ei ≥ −(axi + byi − c)
∀i ∈ Points

M ≥ ei

The cost function is given by
Minimize M

3 Problem 7.11

Dual LP

Minimize 3λ + 5ν

Subject to
2λ + ν ≥ 1
λ + 3ν ≥ 1

λ, ν ≥ 0
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Solution of primal LP (Solve graphically) is x = 4
5 , y = 7

5 . Similarly solution of dual LP is λ = 2
5 , ν = 1

5 .
By LP duality verify that at these points the cost functions of primal and dual LP computes to the same
value of 2.2.

4 Problem 7.17

(a)Max flow : 4+2+2+3 = 11, Min Cut : {s,a,b}, {c,d,t}
(b)Vertices reachable from S are {A,B} while vertices from T are {C}
(c)Bottleneck Edge Identification: {AC,BC}
(d)The example is shown in Figure 1
(e)Algorithm outline for Bottleneck Edge Idenitification: Generate the residual graph after the ford-fulkerson

Figure 1: Counterexample for Shortest Path Tree

algorithm is run. Consider each edge (source, sink) in the residual graph where source, sink ∈ V . If s is
reachable from source and t is reachable from sink then (source, sink) is a bottleneck edge. Reachability
property proves the correctness of the algorithm since if s and t are not reachable from source and sink
it is not possible to augment more flow on the path from s to t and then increasing the capacity of edge
(source, sink) doesn’t increase the maximum flow.

5 Problem 7.25

(a)We define flow variables fij on each edge (i, j) ∈ E of the graph G=(V,E). Based on the that maximum
flow from S to T can be written as a linear program as follows

Maximize fsa + fsb

Subject to
fsa ≤ 1
fsb ≤ 3
fab ≤ 1
fat ≤ 2
fbt ≤ 1

fsa = fab + fat

fsb + fab = fbt

fsa, fsb, fab, fat, fbt ≥ 0
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(b)Dual of the linear program: We have dual variables λij associated with each edge (i, j) ∈ E and νi

associated with each vertex i ∈ V in the graph G=(V,E).

Minimize λsa + 3λsb + λab + 2λat + λbt

Subject to
λsa + νa ≥ 1
λsb + νb ≥ 1

λab − νa + νb ≥ 0
λat − νa ≥ 0
λbt − νb ≥ 0

λsa, λsb, λab, λat, λbt ≥ 0
νa, νb Unrestricted

(c)General dual formulation can be written as

Minimize
∑
∀e∈E

ceye (1)

Subject to (2)
yij − xi + xj ≥ 0∀(i, j) ∈ E, i, j /∈ {s, t} (3)

ysi + xi ≥ 1∀(s, i) ∈ E (4)
yjt − xj ≥ 0∀(j, t) ∈ E (5)

yij ≥ 0∀(i, j) ∈ E (6)
(7)

(d)Summing up constraints 1-3 we can obtain that∑
∀(i,j)∈E

yij ≥ 1

(e)xu is the potential defined on the vertices. ye represents if the specified edge is on a cut. Given a graph
G=(V,E), for any cut V = V 1∪ V 2. For an edge (u, v) if u ∈ V 1 and v ∈ V 2 then y(u,v) = 1 othewise y(u,v)

is 0. For all nodes u ∈ V 1 set xu as 1 and for all nodes in u ∈ V 2 set xu as 0. The assignment satisfies the
constraints given and the cost function

∑
∀e∈E ceye exactly sums up the capacities of edges in a cut.

6 Problem 7.31

(a)2000 augmenting paths can be found out each sending a single unit of flow in this particular graph.
(b)We define the capacity of a s-t path as the smallest capacity of its constituent edges. We define a variable
cap on each vertex.

procedure IdentifyFattestPath(G,ce,s)
Input: Graph G=(V,E), ce capacity of edge e

source vertex s
Output: Fattest s-t path
for all vertices v ∈ V :
cap(v) = ∞
prev(v) = nil

H = makequeue(V) (using cap values as keys)
while H is not empty:
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u = deletemax(H)
for all edges (u,v) ∈ E
if cap(v) < min{cap(u), c(u,v)}

cap(v) = min{cap(u), c(u,v)}
prev(v) = u
decresekey(H,v)

(c)Using the duality of Maximum flow problem we know that there is a min-cut associated with the maximum
flow. Now min-cut divides the vertices V into two sets V 1 and V 2. Each edge e in the cut must be an edge
of some s− t path in the graph and the flow associated with this path is capacity of the edge ce. Therefore
the maximum flow must be the sum of the capacity of edges corresponding to min-cut edges e. Since edges
in a min-cut are bounded by |E|, therefore maximum flow can be decomposed into at most |E| paths.
(d)Since F is the sum of the flow over at most |E| paths, therefore each flow augmentation decreases the
maximum flow bound by 1

|E| . After k iteration the maximum flow bound is given by

F (1− 1
|E|

)k

Following discussion in greedy set cover algorithm, k is given by O(|E| log F ).

4


