
Solutions to Homework 3

Debasish Das
EECS Department, Northwestern University

ddas@northwestern.edu

1 Problem 2.4

Recurrence for Algorithm A

T (n) = 5T (
n

2
) + O(n) (1)

Using Master’s theorem we get a bound of O(nlog 5).
Recurrence for Algorithm B

T (n) = 2T (n− 1) + O(1) (2)

The idea to solve such recurrence is to use a recursion tree and combine the
constant time operation at each level of recursion tree. Alternatively you can
use substitution.

T (n) = 2T (n− 1) + O(1)
T (n− 1) = 2T (n− 2) + O(1)

...

T (2) = 2T (1) + O(1)

Substituting the values of T(i-1) into the equation of T(i), we get the following
sum

T (n) =
n−1∑
i=0

2i ·O(1) (3)

Thus we obtain T(n) as O(2n)
Recurrence for Algorithm C

T (n) = 9T (
n

3
) + O(n2) (4)

Using Master’s theorem we get O(n2 log n)
If we do an order analysis, it turns out that Algorithm C is most efficient,

since log n grows slower than nlog 5−2.

1



2 Problem 2.12

In this problem we have to give an recurrence for the number of lines printed
by the algorithm. The recurrence is given as follows

L(n) =
{

1 + 2L(n
2 ) if n > 1

0 if n = 1 (5)

Theorem 1 L(n) = Θ(n)

Proof: Base Case: L(1) = 0 which is Θ(1)
Hypothesis: c1·k ≤ L(k) ≤ c2·(k-1), k < n
Induction: L(n) = 1 + 2L(n

2 ) ≥ 1 + 2(c1 · n
2 )=1+c1n=k1n where k1 is a constant

equal to c1 + 1
n

Similarly for the other bound, L(n) = 1 + 2L(n
2 ) ≤ 1 + 2(c2 · (n

2 − 1)) = 1+c2n
- 2c2 = k2(n-1) where k2 = c2 − (c2−1)

(n−1)

Using above result we can say that L(n) is Θ(n). We can do a more accurate
analysis using recursion tree and establish that the line will be printed n-1 times,
which is still Θ(n).

3 Problem 2.14

Given an array of n elements, we need to remove the duplicate elements from
the array in O(n log n) time. Idea is to maintain the order of elements in the
array after the duplicates are removed. The following example explains the idea.
Let the array A has following numbers: 2 3 1 3 1 4.
Once the duplicate numbers are removed the output array should be 2 3 1 4.
Note that the order of elements in the final output array is maintained. In other
words the final array is not sorted.

function remove-duplicate(a[1...n])
Input: An array of numbers a[1...n]
Output: Array A with duplicates removed
Construct an array temp[1..n]:
temp[i] has two fields key and value

for i = 1 to n
temp[i].value = a[i]
temp[i].key = i

sort temp based on value
remove duplicates from temp based on value:
keep the entry with minimum key

sort temp based on key
construct array A from temp:
A[i] = temp[i].value

return A

2



The field key helps in keeping the order of elements in output array. Two
sort takes O(n log n). Duplicate removal considering key is O(n). Therefore
the algorithm is O(n log n). If we don’t consider maintaining the order of the
original array in the output array the algorithm can be simply given as

function remove-duplicate(a[1...n])
Input: An array of numbers a[1...n]
Output: Array A with duplicates removed
sort a
construct array A from a:
by removing duplicate entries from a

return A

4 Problem 3.5

Given a graph G = (V,E) we have th find another graph GR = (V,ER) where
ER = (v, u) : (u, v) ∈ E. We assume that each edge e has a source vertex u and
a sink vertex v associated with it.

function find-reverse(G)
Input: Graph G = (V,E) in adjacency list representation
Output: Graph GR

Generate all edges e ∈ E using any traversal
Construct adjacency list GR:
vertex set = V

For each generated edge e
temp = e.source
e.source = e.sink
e.sink = temp
insert e into GR

return GR

Complexity Analysis: All edges can be generated in O(V + E). Edges can
be modified and new adjacency list can be populated in O(E). Therefore the
algorithm is linear.

5 Problem 3.7

A bipartite graph G=(V,E) is a graph whose vertices can be partitioned into
two sets (V=V1 ∪ V2 and V1 ∩ V2 = ∅ such that there are no edges between
vertices in the same set.Formally

u, v ∈ V1 ⇒ (u, v) /∈ E

u, v ∈ V2 ⇒ (u, v) /∈ E

3



(a)We use the property given in (b) to get a linear time algorithm to determine
whether a graph is bipartite. The property says that an undirected graph is bi-
partite if it can be colored by two colors. The algorithm we present is a modified
DFS that colors the graph using 2 colors. Whenever an back-edge, forward-edge
or cross-edge is encountered, the algorithm checks whether 2-coloring still holds.

function graph-coloring(G)
Input: Graph G Output: returns true if the graph is bipartite

false otherwise
for all v ∈ V:
visited(v)= false
color(v) = GREY

while ∃s ∈ V : visited(s) = false
visited(s) = true
color(s) = WHITE
S = [s] (stack containing v)
while S is not empty
u = pop(S)
for all edges (u,v) ∈ E:
if visited(v) = false:
visited[v] = true
push(S,v)

if color(v) = GREY
if color(u) = BLACK:
color(v) = WHITE

if color(u) = WHITE:
color(v) = BLACK

else if color(v) = WHITE:
if color(u) 6= BLACK:
return false

else if color(v) = BLACK:
if color(u) 6= WHITE:
return false

return true

(b)

Lemma 1 An undirected graph is bipartite if and only if it contains no cyles of
odd length

Proof: ⇒Consider a path P whose start vertex is s, end vertex is t and it passes
through vertices u1, u2, ..., un and the associated edges are (s, u1), (u1, u2), ..., (un, t).
Now if P is a cycle, then s and t are the same vertices. Without loss of gener-
ality assume s is in V1. Each edge (ui, ui+1) goes from one vertex set to other.
Therefore a path must have 2·i edges to come back into the same vertex set
where i ∈ N. Since s and t are in same vertex set, so the length of the cycle
formed must be 2·i which is even.
⇐Suppose the graph has a cycle of odd length. Let the cycle be C and it

4



passes through vertices u1, u2, ..., un where u1 = un. The associated edges are
(u1, u2), ..., (un−1, un). We start coloring edges of using two colors WHITE and
BLACK. Without any loss of generality u1 is colored WHITE while un−1 is
colored BLACK since n is odd and therefore n − 1 is even. Choosing color of
un as WHITE conflicts with the color of un−1 while choosing color as BLACK
conflicts with the color of u1. Therefore it is not possible to color an odd cycle
with 2 colors which implies that the graph is not bipartite(using the property
mentioned in (b))
(c)3. It follows from the ⇐ proof of part (b).

6 Problem 3.13

(a)

Lemma 2 In any connected undirected graph G=(V,E) there is a vertex v ∈ V
whose removal leaves G connected

Proof: Consider a graph G=(V,E) and a Depth-first-search tree T constructed
from the graph using DFS. Given any connected graph, generation of T is linear
time O(V+E) and there exist one unique tree T. Denote the leaves of the tree
T by L(T). If we choose any vertex v ∈ L(T), removal of that vertex and
the edges associated with it will keep T connected (by the definition of tree).
Thus T̂ = T - {v} is connected which implies that the graph Ĝ=(V-{v},E-
{(i, j) : i = v ∨ j = v}) is connected since T̂ and Ĝ are isomorphic.
(b)See Figure 1(a)
(c)See Figure 1(b)

Figure 1: Examples for 3.13(b) and 3.13(c)

5


