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1 Problem 1.14

Using the results from 0.4, Fibonacci numbers in terms of matrix can be repre-

sented as follows N
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Since F,(mod p) can be obtained by taking the first term of the matrix (FF" )
n+1

(mod p). As the matrix <F0> is a constant matrix, computing ((1) 1) (mod

Fy
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1 1) as A. An
extension of modular exponentiation algorithm can be employed to solve this
problem once we prove the following theorem.

p) is sufficient to compute Fj,(mod p). We call the matrix

Theorem 1 Given any general matriz A, (A mod p)x (A mod p) = A?(mod p)

Proof: Assume A as any matrix (Ccl Z
a+klp b+Ek%p
(c +Ep d+K'p
(A mod p) with (A mod p), the first term in the final matrix can be written as
b2 + ac + p(C) where C is any constant which is equivalent to the first term of
the matrix A%(mod p). Similarly it holds for other terms as well. [
Using the above theorem, we can establish in general that (A” (mod p) x

(A mod p) = A"*! (mod p). The algorithm is given as

). (A mod p) can be written as

> where k!,..,k* are arbitrary integers. After multiplying

function Modified-modexp(A, p, n)

Input: 2x2 Array A where each element is of n-bits,
p (n bit) and integer exponent n

Output: A™ mod p

if y = 0: return Ip

z = Modified-modexp(A,p,|%|)

temp = (z mod p)x(z mod p)

if y is even:



return temp
else:
return (A mod p) Xtemp

Complexity Analysis : Number of recursive calls are analogous to Modular
Exponentiation presented at page 19. Matrix multiplication is O(n?) (Chapter
3 presents a better bound). Hence the complexity of the algorithm is O(n?).

2 Problem 1.15

Statement : For any a, b, if ax = bx mod ¢, then a = b mod c.
Necessary and Sufficient Condition Derivation

ax = bx(modc) = c|(a — b)x
a = b(modc) = c|(a —b)

Now since ¢ must divide (a-b)x and ¢ must divide (a-b), we should choose x
such that GCD(c,x) = 1 which will ensure that if (a-b)x is divisible by ¢, then
(a-b) must be divisible by ¢ as GCD(c,x) is 1.

3 Problem 1.17

x and y are each n-bit long. We are performing complexity analysis of 2 algo-
rithms for z¥ computation.

function Iterative-Exponentiation(x,y)
Input: x and y each n-bit long
Output: oY
prod = x
for i =1 to y-1

prod = x * prod
return prod

Complexity Analysis : After each multiplication, the size of the product be-
comes i.n where i is the current iteration. Total time is given by Zi’;ol O(in-n)
= WO(nQ). The complexity is O(y?n?) where y is O(2").

function Recursive-Exponentiation(x,y)
Input: x and y each n-bit long
OQutput: z¥
if y = 0: return 1
z = Recursive—Exponentiation(x,L%J)
if y is even:
return z*z
else:
return x*zx*z



Complexity Analysis : Since y is n-bit long, the number of iterations is bounded
by O(n). Size of z on each return from recursive call increases by a factor of 4.
Total running time is given by

O(n?) + 0(4n?) + ... + O((2"2n)?) =0(n?2%")

4 Problem 1.24

From the set given 0,1,2,...,p"-1 we have to exclude all numbers which are mul-
tiple of p since ged(kp,p™) where 0< k < p"~! is surely not equal to 1 as p is a
common divisor for both the numbers. Now consider numbers of the form kp-+i
where 0<i<p-1. k and i are integers. Now ged(kp+i,p™) = 1 as p is surely not
a divisor of kp+i and p is the only prime divisor of p™. Therefore total numbers
in the set which are multiple of p are p”~!. Numbers which have an inverse are

pn _pn—ll

5 Problem 1.26

We have to compute 177t (mod 10) to get the least significant digit.

10 = 2-5 where 2 and 5 are primes
p = 2 qg=5 and a=17
aP= V=D = {(mod10) = 17* = 1(mod10)
177" = (42 4+ 1) = 4.C 4 lwhere C is some constant
177 (mod10) = 174 (mod10) - 17(mod10) = 7

6 Problem 1.44

Alice and her three friends are communicating using RSA cryptosystem. Re-
spective public keys are (N;,e;) where i € 1,2,3. Alice sent the same message
MSG to all three of her friends. Since e; = 3, we get following cyphertext M;
M, = MSG®*mod(Ny)
My = MSG®*mod(Ny)
Ms = MSG*mod(Ns)
Rearranging terms the above equations can be written as
MSG? = Mymod(Ny)
MSG? = Mymod(N>)
MSGB = Mngd(Ng)
Someone who intercepts all the 3 encrypted messages My, Ms and M3 along with

the public keys Ny, Na, N3 and e can compute M SG? using Chinese Remainder
Theorem.



Theorem 2 Suppose myi, mo,...,ms are s integers, no two of which have a
common divisor other than 1. Let M = mims...ms and suppose a,as,...,as aTe
integers such that ged(a;,m;) = 1 for each i. Then the s congruences

arx = by (modmy)
asx = ba(modms)
asx = bs(modmy)
have a simultaneous solution that is unique modulo M.

Proof: From each particular congruence we construct one common to the
entire set. We choose integers cy,cs,...,cs such that

a;c; = b;(modm;) (2)

Note that one possibility of choose ¢; is to take them equal to b;. Now let
n; = mM No two m; have a common factor, therefore ged(n;,m;)=1. Therefore
an inverse 7; exist such that n;7; = 1(modm;). Thus the xy defined by

To = C1N1M1 + CaNatlly + ... + CsNgMg (3)

is a solution to the original system of s congruences. Note that by definition m;
divides each n; except n;. Thus

a;To = Q;C1N11M1 + a;Cansrls + ... + a;CsNTlg
= ajcingn;(modmy)
= aic;(modm;)
= b;(modm;)
Hence z is a solution of each congruence. [

Using the theorem getting M is straightforward. For the given problem
a1, az and az are 1 respectively. ¢ = My, co = My and ¢35 = M3. M =
N1N2N3. ny = N2N3, Ng = N1N3 and nsg = N1N2. Compute Til by the equation
nin; = 1(modN7) using Extended Euclid Algorithm. Similarly compute 7iy
and 7i3. Following that generate x( as the solution for the congruences. Now

xo(modN1 N2 N3) is the required solution. Thus MSG? = zg and MSG = xé

7 Errata for Homework 1

Problem 2 (0.1) (1) n2 = O(5'°&")



