
Solutions to Homework 2

Debasish Das
EECS Department, Northwestern University

ddas@northwestern.edu

1 Problem 1.14

Using the results from 0.4, Fibonacci numbers in terms of matrix can be repre-
sented as follows (

Fn

Fn+1

)
=

(
0 1
1 1

)n

.

(
F0

F1

)
(1)

Since Fn(mod p) can be obtained by taking the first term of the matrix
(

Fn

Fn+1

)
(mod p). As the matrix

(
F0

F1

)
is a constant matrix, computing

(
0 1
1 1

)n

(mod

p) is sufficient to compute Fn(mod p). We call the matrix
(

0 1
1 1

)
as A. An

extension of modular exponentiation algorithm can be employed to solve this
problem once we prove the following theorem.

Theorem 1 Given any general matrix A, (A mod p)×(A mod p) = A2(mod p)

Proof: Assume A as any matrix
(

a b
c d

)
. (A mod p) can be written as(

a + k1p b + k2p
c + k3p d + k4p

)
where k1, .., k4 are arbitrary integers. After multiplying

(A mod p) with (A mod p), the first term in the final matrix can be written as
b2 + ac + p(C) where C is any constant which is equivalent to the first term of
the matrix A2(mod p). Similarly it holds for other terms as well.

Using the above theorem, we can establish in general that (An (mod p) ×
(A mod p) = An+1 (mod p). The algorithm is given as

function Modified-modexp(A, p, n)
Input: 2x2 Array A where each element is of n-bits,

p (n bit) and integer exponent n
Output: An mod p
if y = 0: return I2

z = Modified-modexp(A,p,
⌊

n
2

⌋
)

temp = (z mod p)×(z mod p)
if y is even:

1



return temp
else:
return (A mod p)×temp

Complexity Analysis : Number of recursive calls are analogous to Modular
Exponentiation presented at page 19. Matrix multiplication is O(n2) (Chapter
3 presents a better bound). Hence the complexity of the algorithm is O(n3).

2 Problem 1.15

Statement : For any a, b, if ax ≡ bx mod c, then a ≡ b mod c.
Necessary and Sufficient Condition Derivation

ax ≡ bx(modc) ⇒ c|(a− b)x
a ≡ b(modc) ⇒ c|(a− b)

Now since c must divide (a-b)x and c must divide (a-b), we should choose x
such that GCD(c,x) = 1 which will ensure that if (a-b)x is divisible by c, then
(a-b) must be divisible by c as GCD(c,x) is 1.

3 Problem 1.17

x and y are each n-bit long. We are performing complexity analysis of 2 algo-
rithms for xy computation.

function Iterative-Exponentiation(x,y)
Input: x and y each n-bit long
Output: xy

prod = x
for i = 1 to y-1
prod = x * prod

return prod

Complexity Analysis : After each multiplication, the size of the product be-
comes i.n where i is the current iteration. Total time is given by

∑y−1
i=0 O(in ·n)

= (y−1)y
2 O(n2). The complexity is O(y2n2) where y is O(2n).

function Recursive-Exponentiation(x,y)
Input: x and y each n-bit long
Output: xy

if y = 0: return 1
z = Recursive-Exponentiation(x,

⌊
y
2

⌋
)

if y is even:
return z*z

else:
return x*z*z

2



Complexity Analysis : Since y is n-bit long, the number of iterations is bounded
by O(n). Size of z on each return from recursive call increases by a factor of 4.
Total running time is given by
O(n2) + O(4n2) + ... + O((2n−2n)2) =O(n222n)

4 Problem 1.24

From the set given 0,1,2,...,pn-1 we have to exclude all numbers which are mul-
tiple of p since gcd(kp,pn) where 0≤ k < pn−1 is surely not equal to 1 as p is a
common divisor for both the numbers. Now consider numbers of the form kp+i
where 0<i<p-1. k and i are integers. Now gcd(kp+i,pn) = 1 as p is surely not
a divisor of kp+i and p is the only prime divisor of pn. Therefore total numbers
in the set which are multiple of p are pn−1. Numbers which have an inverse are
pn − pn−1.

5 Problem 1.26

We have to compute 171717 (mod 10) to get the least significant digit.

10 = 2 · 5 where 2 and 5 are primes
p = 2 q = 5 and a = 17

a(p−1)(q−1) = 1(mod10) ⇒ 174 = 1(mod10)
1717 = (42 + 1)17 = 4 · C + 1where C is some constant

171717
(mod10) = 174·C(mod10) · 17(mod10) = 7

6 Problem 1.44

Alice and her three friends are communicating using RSA cryptosystem. Re-
spective public keys are (Ni,ei) where i ∈ 1,2,3. Alice sent the same message
MSG to all three of her friends. Since ei = 3, we get following cyphertext Mi

M1 = MSG3mod(N1)
M2 = MSG3mod(N2)
M3 = MSG3mod(N3)

Rearranging terms the above equations can be written as

MSG3 = M1mod(N1)
MSG3 = M2mod(N2)
MSG3 = M3mod(N3)

Someone who intercepts all the 3 encrypted messages M1, M2 and M3 along with
the public keys N1, N2, N3 and e can compute MSG3 using Chinese Remainder
Theorem.

3



Theorem 2 Suppose m1, m2,...,ms are s integers, no two of which have a
common divisor other than 1. Let M = m1m2...ms and suppose a1,a2,...,as are
integers such that gcd(ai,mi) = 1 for each i. Then the s congruences

a1x ≡ b1(modm1)
a2x ≡ b2(modm2)

...,

asx ≡ bs(modms)

have a simultaneous solution that is unique modulo M.

Proof: From each particular congruence we construct one common to the
entire set. We choose integers c1,c2,...,cs such that

aici ≡ bi(modmi) (2)

Note that one possibility of choose ci is to take them equal to bi. Now let
ni = M

mi
. No two mi have a common factor, therefore gcd(ni,mi)=1. Therefore

an inverse n̂i exist such that nin̂i ≡ 1(modmi). Thus the x0 defined by

x0 = c1n1n̂1 + c2n2n̂2 + ... + csnsn̂s (3)

is a solution to the original system of s congruences. Note that by definition mi

divides each nj except ni. Thus

aix0 = aic1n1n̂1 + aic2n2n̂2 + ... + aicsnsn̂s

≡ aicinin̂i(modmi)
≡ aici(modmi)
≡ bi(modmi)

Hence x0 is a solution of each congruence.
Using the theorem getting M is straightforward. For the given problem

a1, a2 and a3 are 1 respectively. c1 = M1, c2 = M2 and c3 = M3. M =
N1N2N3. n1 = N2N3, n2 = N1N3 and n3 = N1N2. Compute n̂1 by the equation
n1n̂1 = 1(modN1) using Extended Euclid Algorithm. Similarly compute n̂2

and n̂3. Following that generate x0 as the solution for the congruences. Now
x0(modN1N2N3) is the required solution. Thus MSG3 = x0 and MSG = x

1
3
0

7 Errata for Homework 1

Problem 2 (0.1) (l) n
1
2 = O(5log n)

4


