
Solutions to Homework 1

Debasish Das
EECS Department, Northwestern University

ddas@northwestern.edu

1 Problem 1

The algorithm will print GCD and LCM of X and Y.
To prove: GCD(X,Y) is given by x+y

2 while LCM(X,Y) is given by u+v
2

Proof: Invariant for GCD computation are x > 0 ∧ y > 0 ∧ GCD(X, Y) =
GCD(x, y). Verify both steps maintain this invariant using the number theory
result that GCD(x,y) = GCD(x-y,y) = GCD(x,y-x). At termination we have
x = y and therefore GCD(x, y) = GCD(x, x) = x+x

2 = x+y
2 .

Invariant for LCM computation is uy + vx. Verify that both steps of algorithm
maintain uy+vx as invariant. Therefore from the initialization conditions when
algorithm terminates uy + vx = XY +XY . Now since x = y = GCD(X, Y) we
get u+v

2 × GCD(X, Y) = XY . Using the number theory result we know that
u+v

2 is the LCM.

2 Problem 2(0.1)

(a)n-100 = Θ(n-200)
(b)n

1
2 = O(n

2
3)

(c)100n+log(n) = Θ(n + log(n)2)
(d)nlogn = Θ(10nlog10n)
(e)log2n = Θ(log3n)
(f)10logn = Θ(log(n2)
(g)n1.01 = Ω(nlog2(n))
(h) n2

log n = Ω(n(log n2))
(i)n0.1 = Ω((log n)10)
(j)(log n)log n = Ω(n

log n)

(k)n
1
2 = Ω(log n3)

(l)n
1
2 = Θ(5log n)

(m)n2n = O(3n)
(n)2n = Θ(2n+1)
(o)n! = Ω(2n)
(p)log nlog n = O(2log n2

)
(g)

∑ n
i=1i

k = O(nk+1)

1

3 Problem 3(0.2)

The given function g(n) turns out to be a geometic series and it evaluates to

g(n) =

cn+1−1

c−1 if c > 1
1−cn+1

1−c if c < 1
n if c = 1

(1)

(a) When c < 1, lower bound on Equation 1 can be obtained by analyzing the
case when n = 0 which is 1. Similarly upper bound is obtained by analyzing
the case when n → ∞ which comes out to be 1

1−c . Since we got two constants
bounding Equation 1 g(n) is Θ(1)
(b) When c > 1 similar analysis will produce upper and lower bounds as cn

which makes g(n) as Θ(cn)
(c) When c = 1, the bound of Θ(n) is straight forward as each term of g(n)
evaluates to 1 and there are n terms.

4 Problem 4(0.3)

(a) Base case : Fib[6] = 8 ≥ 23

Hypothesis : Fib[i] ≥ 2i/2∀i ∈ (6, .., k)
Induction : Fib[k+1] = Fib[k] + Fib[k-1] ≥ 2k/2(1 + 1√

2
)

Fib[k+1] ≥ 2k/2 ×
√

2
Therefore Fib[k+1] ≥ 2

k+1
2

(b)Using the generating function derivation shown in class Fibonacci numbers
can be represented as

Fib[n] =
1√
5
(φn − ϕn) (2)

where φ = 1+
√

5
2 and ϕ = 1−

√
5

2 Now choosing c as log φ we need to prove that
Fib[n] ≤ φn. We use induction to prove that.
Base case : Fib[0] = 1 ≤ φ0 = 1
Hypothesis : Fib[i] ≤ φi ∀i ∈ (0, .., k − 1)
Induction : φn = φ2φn−2 = (1 + φ)φn−2

Using induction hypothesis φn ≥ Fib[n− 1] + Fib[n− 2] = Fib[n]
Therefore c is given as log φ
(c)Any number in between 0.5 and log φ will suffice. Largest is log φ.

5 Problem 5(1.31)

(a) N is an n-bit number. N! is given by 1.2.3...N.
Upper Bound : Assuming each number 1,2,3,...,N is represented by n bits, the
result of multiplying N n-bit number will give a number of N ∗ n bits where
N = 2n. Hence it is O(N*n)
Lower Bound : Since each number i ∈ (1, 2, ..., N) can be optimally represented

2

by log i bits, total number of bits in N! is given by
∑N

i=1 log i which is log N !.

Using Sterling’s approximation or using a factor argument we know N ! ≥ N
2

N
2

which implies that total number of bits in N! is lower bounded by N log N . It
turns out to be Ω(N*n). Combining both we get Θ(N*n)
(b) A simple iterative algorithm to solve the problem is given by:

Input : N
Output : N!
prod = 1
for i = 1 to N
prod = prod * i

return prod

Complexity analysis:We present a worst case bound. Assuming each of the
number 1,2,3,...,N are n-bit long each multiplication computes product of a
i×n bit number with n bit number. Therefore total time taken by the for-loop
is given by

∑N
i=1(n× in) which turns out to be O(N2 × n2)

6 Problem 6(1.32)

Given numbers X and Y, apply Euclid algorithm (page 20) to compute GCD(X,Y).
Followed by that get LCM(X,Y) by X×Y

GCD(X,Y) . GCD computation takes O(n3)
where n are the number of bits in X, Y. Final LCM computation takes O(n2).
Therefore the algorithm is bounded by O(n3).

3

