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Abstract

With the unstoppable growth in data collection, data mining is
playing an important role in the way massive data sets are analyzed.
Trends clearly indicate that future decision making systems would
weigh on even quicker and more reliable models used for data
analysis. In order to achieve this, current algorithms and computing
systems have to be optimized and tuned to effectively process the
large volumes of raw data to be seen in future. In this paper, we
present a brief overview of the current approaches and challenges
faced in system design. The paper starts out by highlighting
the uniqueness of data mining applications, which actually makes
current “generic” system designs unsuitable for mining large data.
Subsequently, we summarize the current innovations and efforts
made by researchers to design systems to efficiently process data
mining workloads.

1 Introduction

Data collection and data storage rates are growing at an ex-
ponential pace. The “How Much Information” project at
the University of California at Berkeley [23] have recently
estimated that over five exabytes of data was stored across
paper, film, magnetic and optical mediums during the year
2002. Also, this number represents a near doubling of the
total data stored worldwide in the previous two years. This
particular study has not yet been updated to represent more
recent years, but it is reasonable to assume that this exponen-
tial trend has continued. Corporations like Intel realizes this
as well, since they have introduced the looming “Era of Tera”
where people will require teraflops of computing power, ter-
abits per second of communications bandwidth and terabytes
of data storage [6]. One can already purchase terabytes of
data storage today. If the current trends continue, such an
explosion of data would clearly outstrip our ability to make
meaningful use of it. While this problem is partially algo-
rithmic in nature, it is also an indictment of current system
architectural practices. In recent years, system performance
has not been scaling well with the amount of data. Overall
system performance has not been keeping up with on-chip
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speed improvements from advances in transistor technology.
For example, the off-chip memory latency of a Pentium 4
is more than 2 times that of a 386 (in terms of processor cy-
cles). Clearly, processor speeds have scaled but not their data
handling capabilities. This is especially true for data-driven
applications (including data mining workloads) since their
underlying operations are memory-intensive in nature.

In order to close the gap between data-intensive appli-
cations and computing systems, we propose the following
two-phased approach:
(a) The first phase involves performing an in-depth study
to clearly understand the system characteristics and bottle-
necks, and also to enlist the future computing requirements
of data mining applications
(b) The second phase consists of designing novel (or
adapting existing) computer systems to cater to the primary
demands of data mining workloads. On the other hand, the
algorithms too have to be revised to suit the demands of new
applications and architectures.

The rest of this paper describes the above approach in
detail. We also consider several existing work, and discuss
their relevance to this approach. Then, we present the
quantitative facts to prove the uniqueness of data mining
applications and its impact on the current approach to system
design. The paper then presents a brief overview of some
of the emerging architectures and systems that are designed
specifically for handling data mining workloads. We also
present the tradeoffs between the many designs. Overall,
our research concludes that a thorough understanding of the
characteristics of data mining applications from a systems
perspective is completely essential in order to design high
performance data mining systems.

2 Application Analysis

In the past, researchers have performed system level char-
acterizations of data mining algorithms to reveal their core
characteristics and bottlenecks [1, 7, 22, 27]. These studies
primarily focus on studying the memory behavior of select
data mining applications. Given the fact that data mining
is still an evolving field, understanding the dynamic runtime
characteristics of the applications is in reality a challenging
task. A comprehensive system-wide study of data mining



applications would be useful in understanding their dynamic
behavior.

In our research work, we use non-traditional methods to
identify the system bottlenecks and computational require-
ments of several data mining applications. A comprehensive
framework has been set up to extract various architectural
features and design implications of data mining applications.
We studied a mix of several data mining applications using
this framework and compiled a benchmark suite named NU-
MineBench [2]. This benchmark suite has been built after
extensive investigation of well-known data mining applica-
tions and their characteristics. We also analyze each applica-
tion in detail and identify the core characteristics that make it
unique. Although there has been previous work analyzing in-
dividual data mining applications, we believe that analyzing
the behavior of a complete benchmarking suite will certainly
give a better understanding of the underlying bottlenecks for
data mining applications. We understand the indispensable
need for a data mining benchmark suite since there are cur-
rently no mechanisms to review data mining algorithms and
systems that run data mining applications. Benchmarks do
not only play a role in measuring the relative performance
of different systems. In order to perform an architectural ex-
ploration study, a data mining benchmark is a very essential
tool. Such a benchmark would also aid programmers in the
specific domain in various ways.

NU-MineBench consists of 15 scalable, high perfor-
mance applications from several application domains. The
applications are scalable (parallel versions of applications
are included), representative and widely known. Table 1
shows the applications and their descriptions [2]. We ana-
lyzed the benchmark applications using a mixture of simu-
lators, architecture modeling tools and system performance
profiling tools [22, 32, 25]. The goal of our studies is to
analyze and extract the several system wide characteristics
of data mining applications. We believe such characteristics
serve to be one of the key factors to designing new algo-
rithms and systems for data mining applications.

In the following subsections, we highlight some of
the key characteristics of data mining applications that we
identified from our studies.

2.1 UniquenessOne distinct feature is the uniqueness of
data mining applications. We compared NU-MineBench ap-
plications against applications from other prominent bench-
mark suites. Specifically, data mining applications were
compared against compute intensive applications, multime-
dia applications, streaming applications and database appli-
cations to identify the core differences. Applications were
taken from integer applications benchmark (SPEC INT from
SPEC CPU2000 [26]), floating point applications bench-
mark (SPEC FP from SPEC CPU2000), multimedia appli-
cations benchmark (MediaBench from UCLA [21]) and de-

cision support applications benchmark (TPC-H from Trans-
action Processing Council [29]).

We performed statistical analysis on the architectural
characteristics of applications to identify their core differ-
ences. Specifically, we monitored the performance counters
during execution using profiling tools (like Intel VTune an-
alyzer [19]) for every application, and analytically studied
their individual characteristics. A k-Means based clustering
algorithm [16] was applied to the performance characteris-
tics of these applications. The goal of this clustering is to
find clusters of characteristics. That is, the assumption is
that each benchmark is unique. This is intuitively true since
the characteristic features of each benchmark is different. If
data mining applications resemble any other domain, they
both will belong to the same cluster, in which case, existing
system optimizations from the corresponding field can be ap-
plied to data mining applications as well. Figure 1 shows the
scatter plot of the final cluster configuration obtained from
the results of the clustering method. Clearly data mining
algorithms fall into different clusters, with a few of them
sharing characteristics with other application domains. Our
approach identifies data mining applications to be distinctly
unique.

Table 2 shows the distinct characteristics of data min-
ing applications as compared to other applications. One key
attribute that signifies the differences is the number of data
references per instruction retired. For data mining applica-
tions, this rate is 1.103, whereas for other applications, it is
significantly less. The number of bus accesses originating
from the processor to the memory (per instruction retired)
verifies this fact as well. These results solidify the intuition
that data mining is data-intensive by nature.

Another important difference is the fraction of total
instruction decodes to the instructions retired. This measure
defines the instruction efficiency of a processor. In our
case, the results indicate that data mining applications are
not well handled by the processor. Resource related stalls
comprises of the delay that incurs from the contention of
various processor resources, which include register renaming
buffer entries, memory buffer entries, and also the penalty
that occurs during a branch misprediction recovery. The
above measures have a direct impact on the CPI (Cycles
Per Instruction retired) of the system. A CPI of 1.54 for
data mining applications is considered to nominal [19, 18].
Besides, the number of ALU operations per instruction
retired is also high for data mining applications, which
indicates the extensive amount of computations performed
in data mining applications.

What makes the data mining applications unique is this
combination of high data rates combined with high computa-
tion power requirements. Such a behavior is clearly not seen
in other applications. In addition, data mining applications
tend to oscillate between such data and compute phases reg-



Table 1: Overview of the NU-MineBench data mining benchmark suite

Application Category Description
k-Means Clustering Mean-based data partitioning method

Fuzzy k-Means Clustering Fuzzy logic-based data partitioning method
HOP Clustering Density-based grouping method

BIRCH Clustering Hierarchical data segmentation method
Apriori ARM Horizontal database, level-wise mining based on Apriori property
Eclat ARM Vertical database, equivalence class based method
Utility ARM Utility-based association rule mining
ScalParC Classification Decision tree classification

Naive Bayesian Classification Statistical classifier
SNP Classification Hill-climbing search method for DNA dependency extraction

Rsearch Classification RNA sequence search using stochastic context-free grammar
SVM-RFE Classification Gene expression classifier using recursive feature elimination
GeneNet Structure Learning Gene relationship extraction using microarray-based method
SEMPHY Structure Learning Gene sequencing using phylogenetic tree-based method
PLSA Optimization DNA sequence alignment using Smith-Waterman optimization method
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Figure 1: Classification of data mining, SPEC INT, SPEC FP, MediaBench and TPC-H benchmark applications based on
their characteristics. A k-Means based clustering algorithm was used for this classification. Data mining applications tend
to form unique clusters.
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Figure 2: Scalability of NU-MineBench applications. The
graph shows the speedup of data mining applications on
a Intel Xeon based SMP machine for the 1, 2, 4 and 8
processor cases.

ularly, making the current processors and architectural op-
timizations mostly inadequate. Note that the CPI levels are
nominal for these applications, which highlights the need for
non-traditional system and architecture optimization tech-
niques for data mining applications.

The L1 and L2 miss rates are considerably high for
data mining applications. The reason for this is the inher-
ent streaming nature of data retrieval, which does not pro-
vide enough opportunities for data reuse. This indicates that
current memory hierarchy is insufficient for data mining ap-
plications. It should be noted that the number of branch in-
structions (and the branch mispredictions) are typically low
for data mining applications, which highlights yet another
unique behavior of data mining applications.

2.2 Scalability The core kernels of the NU-MineBench
benchmark are extracted and scaled further by extending
traditional data parallelism techniques widely available in
the literature [31, 14, 4, 16]. Figure 2 shows the scalability
of applications with the processors. Here, the scalability of
the parallel applications is measured based on the execution
times on an 8-way Intel Xeon based shared memory parallel
machine.

Figure 2 shows the benchmark application execution
speedups when executed on 1, 2, 4 and 8 processors. The
performance numbers indicate that most applications show
good scalability with a higher number of processors. For
a few applications, the 2 processor case provides minimal

or in some cases, no speedups. The best speedup, 6.98 on
8 processors, is seen for the Rsearch application. This is
primarily due to the fact that the application data gets uni-
formly distributed on multiple processors, and the processors
process their respective data concurrently. Every processor
accesses only its respective data block in memory, synchro-
nizing only occasionally. The clustering based applications
follow Rsearch in terms of the achieved speedups. In gen-
eral, it can be observed that clustering algorithms show better
scalability than the remainder of the applications. The under-
lying reason for this observation is the highly parallelizable
distance calculation routine, which is common to all the clus-
tering algorithms. The worst scalability is observed for SNP
and SVMRFE. For SVM-RFE, the problem arises due to un-
necessary communication problems and locking of memory
structures. This redundant locking is done to ensure the code
works on distributed and shared memory machines. If the
locks are removed (using other shared memory programming
techniques), the program and its kernels scale better.

Overall, our studies clearly indicate that data min-
ing applications are highly scalable. There are predomi-
nant compute-intensive kernels in data mining applications,
which are highly scalable. Such kernels when parallelized
using data parallelism methods, either at hardware [25] or
traditional methods [22, 32], yield significant performance
improvements in the applications. In a similar study done
by Intel Corporation [4], researchers have proved that data
mining applications are highly scalable. Their results show
close to linear speedups for certain bioinformatics workloads
for up to 8 processors and super-linear speedup for up to 16
processors on shared memory machines. They also prove
the fact that when specific optimizations targeting the un-
derlying system is applied to data mining applications, the
applications provide super-linear speedups.

3 Architecture Design Projections: A System
Perspective

The three approaches adopted by recent researchers to im-
prove the system level performance of data mining applica-
tions are as follows:

1. Heavily system-optimized applications, packages, li-
braries and interfaces

2. Parallel and distributed system design
3. Custom-hardware based system design

Figure 3 shows the above approaches in terms of their
complexity. Algorithmic and library based approaches have
a quick turnaround time. Algorithmic optimizations for en-
hancing system performance are hard to conceive, but once
conceived, they are easy to embed into the data mining ap-
plication in the form of libraries or just by recompiling the
application source using compilation flags. On the other
hand, parallel and distributed versions of these algorithms



Table 2: Comparison of data mining application with other benchmark applications
Benchmark of Applications

Parameter† SPECINT SPECFP MediaBench TPC-H NU-MineBench
Data References 0.81 0.55 0.56 0.48 1.10

Bus Accesses 0.030 0.034 0.002 0.010 0.037
Instruction Decodes 1.17 1.02 1.28 1.08 0.78

Resource Related Stalls 0.66 1.04 0.14 0.69 0.43
CPI 1.43 1.66 1.16 1.36 1.54

ALU Operations 0.25 0.29 0.27 0.30 0.31
L1 Misses 0.023 0.008 0.010 0.029 0.016
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.11 0.14

Branch Mispredictions 0.009 0.0008 0.016 0.0006 0.006
† The numbers shown here for the parameters are values per instruction retired
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complexity, projected performance, time to market and data
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offer even faster execution times. They require a lot of pro-
gramming in order to map the algorithm to the underlying
parallel resources. To ensure accuracy of results and a quick
turnaround time, extensive system optimizations are neces-
sary in these parallel codes as well. Custom-logic and ac-
celerator driven systems began to be expensive alternatives.
But the prices of custom-logic is falling drastically in re-
cent years [30], which make them a viable alternative for
executing data mining applications in terms of cost. The
challenging task lies in identifying the core computational
components of data mining applications and mapping them
efficiently to these logic-based accelerators. In the rest of
this section, we elaborate on existing techniques based on
the above three approaches to speed up data mining appli-
cations. We present a few novel approaches proposed by
researchers in the area of system design and customization
for data mining applications. We also present the advantages
of each approach.

The first approach involves enhancing the application
capabilities to adopt to the system on hand. This includes
both system-specific optimizations at the algorithmic level
and also the design of interfaces and libraries to allow seam-
less interaction of the application with the underlying archi-
tecture. Chen et al. propose an optimization at the algo-
rithmic level to adapt a data intensive application to mini-
mize the usage and caching of memory [3]. In another work,
a dynamic memory allocation strategy based on the access
patterns of certain data mining applications is proposed by
Parthasarathy et al. [24]. They propose memory sharing
techniques that exploit the data locality and false-sharing
properties of shared memory data to significantly improve
the overall application performance. On the other hand, there
also exists several statistical libraries [11, 15] that have been
optimized to minimize the interaction between applications
and the underlying system architecture. Such interfaces also
hide the complexities of system by providing a seamless ac-
cess to the application. Govindaraju et al. extend existing
algorithmic optimizations and the execution capabilities of
graphics processors to data mining applications [13]. Specif-
ically, they utilize an existing sliding window based sorting
algorithm (optimized version) available in graphics proces-
sors and apply it to numerical statistics computation on data
streams.

As verified by our studies (presented in the previous sec-
tion), data mining applications do heavily favor scalable sys-
tems. There is tremendous amount of data and instructions
that need to be processed. Researchers have offered several
parallel and distributed versions of data mining algorithms
[31, 4, 12]. The goal of such development methodologies is
to fully utilize the computing power offered by large scale
high performance setups. There are also scalable data min-
ing packages and benchmarks for high performance systems
[15, 20, 11].

On the other hand, one also has the option of design-
ing customized systems for data mining applications. Re-
searchers at the University of California at Santa Cruz built
a custom-logic based system to accelerate algorithms from



computational chemistry, computational biology, and other
related fields. The system offers 20X to 40X speedups
on a 520 node custom system [8]. The system is spe-
cially designed to effectively solve certain types of prob-
lems, such as gene sequence alignment and hidden Markov
model training. Recently, TimeLogic has introduced a cus-
tom genome analysis system named DeCypher Engine [28].
This processing engine, based on Field-Programmable Gate
Array (FPGA) logic, accelerates the computationally inten-
sive modules within bioinformatics algorithms. Specifically,
DeCypher Engine provides optimal solutions for BLAST,
Smith-Waterman, Hidden Markov Model Analysis, and their
custom gene modeling applications. Results report a 15X to
70X speed up on BLAST based applications. Compugen, a
genomics-based drug and diagnostic discovery company, has
introduced BioXL/H [5]. This is a high-end hardware accel-
erator for rigorous homology searches on protein and nucleic
acid sequence databases. BioXL/H builds upon Compugen’s
Bioaccelerator and BioXL/P, which are the well-known com-
mercial accelerators. Compugen designed the BioXL/H for
higher throughput. A few of the accelerated applications in-
clude Smith-Waterman, ProfileSearch, Translated Searches,
Frame and Profile-Frame. BioXL/H executes these algo-
rithms up to 3X magnitude faster than a high end UNIX pro-
cessor.

In [17], Hayashi et al. propose using a PRAM to
perform the k-Merge process, a conventional method of
performing data mining. A clustering algorithm based on
k-Means methodology was mapped on to a reconfigurable
hardware logic by Estlick et al. [10]. The above work
require algorithmic modifications to the code. Another
pattern matching (pure string matching) hardware has been
proposed by Zhang et al. in [33]. They introduce a string
matching logic on reconfigurable logic and prove that data
mining applications that use string matching show significant
speedups.

Recently, we proposed a hardware accelerator for den-
sity based clustering applications [25]. In this work, we
first extract the inherent kernels of density-based data min-
ing applications. The kernels are actually identified after ex-
tensive characterization and not based on pure algorithmic
analysis. The logic (and the kernels) are generic and are not
application-specific. Our methodology and design are appli-
cable to any distance/density based algorithms. These core
kernels are then accelerated using our proposed accelerator-
based data mining system.

Figure 4 illustrates the generic design of our proposed
accelerator based data mining system. The kernel acceler-
ator exists as a coprocessor along with the existing general
purpose processor. The decision to go with a coprocessor
is because the kernels (that are accelerated by the accelera-
tor) tend to run for a considerable amount of time, allowing
the code to be offloaded to the coprocessor (ensuring good

Reconfigurable 
Accelerator with 
Programmable 

Logic

Core Kernels Operations

CPU

General Purpose 
System

Data Offload
System Cache

Memory

Disk

Figure 4: Design of the accelerator based data mining
system.

speedups that is worth the offload overhead) and thus, allow-
ing the general purpose processor take up other tasks without
getting blocked. Our accelerator is designed to accelerate the
major kernels of most data mining applications. In the case
of [25], we were able to accelerate the three core kernels
of density based clustering algorithms, which include den-
sity calculation and the migration of points to denser regions.
The accelerator works with the processor in speeding up the
kernel execution, which results in application speedups close
to 60X to that of a generic system.

3.1 Comparison of ApproachesIn order to understand
the benefits from various approaches, we compare the
speedups obtained from various approaches. We consider a
cosmology application named HOP [9], and parallelize the
kernels of this application using the different approaches.
That way, we verify their scalability and also study the ben-
efits of using each of the schemes. We extracted and par-
allelized the kernels on a variety of high performance se-
tups. The core kernels of HOP include density calculation,
the neighborhood search and gather process [25]. Figure 5
shows the performance based on the application speedups
obtained on(a) distributed memory machines,(b) shared
memory machine, and(c) reconfigurable logic based data
mining system. The base execution times of each setup is
close. On an eclectic distributed memory setup, the best
speedup achieved is 25X on 64 processors. As the number
of compute nodes increase, the communication overheads in-
crease proportionally, thus, undermining the achieved appli-
cation speedups. On a shared memory machine, the same
application shows 6X speedup on 8 processors. Figure 5(b)
shows the performance of the application on a shared mem-
ory setup consisting of an 8-way Intel Xeon machine. There
is no communication in a shared memory model, but the
overheads due to memory contention increase as the num-
ber of processors increase. Shared memory machines offer
good scalability. However, the complexity of programming
and the cost of building large scale shared memory machines



could be excessive.
Since the application kernels are stand-alone compo-

nents, we extracted and ported these kernels to a prototype
data mining system. This data mining system is based on
the architecture presented in Figure 4. Figure 5(c) shows
the result of executing the application on this data mining
system. Clearly, a reconfigurable logic based data mining
system offers the best speedups. The reason for this is the
fact that the coprocessor is pre-programmed to effectively
accelerate the core kernels in the application [25]. As the
kernel speedups improve, the overall application execution
times decrease. The non-kernels execution times do not ben-
efit from the techniques, which in turn partially mask the
benefits obtained from the kernel speedups. However, our
studies indicate that core kernels cover 86 to 99% of any data
mining application [25], which basically is the reason for the
remarkable speedups seen in Figure 5(c). Our methodology
relies on extracting core (scalable) kernels and accelerating
them on custom logic, thus, driving outstanding application
speedups.

4 Conclusion

Data growth is an unavoidable. Future system design should
consider this growth in data and also the enhanced expecta-
tions in data analysis. We use this fact as a motivation and
present NU-Minebench, a diverse benchmark suite of data
mining applications, to enable development of superior al-
gorithms and systems for data mining applications. Using
NU-MineBench, we verify the fact that data mining appli-
cations form a unique kind of workload, which makes cur-
rent system capabilities insufficient to handle them. From
an in-depth study of data mining applications, we conclude
that they are very scalable in nature. Their memory behavior
is different from other benchmark applications. They show
high L1 and L2 data cache miss rates. Another important
factor is their low instruction-level parallelism. We strongly
believe that the architectural characteristics of data mining
workloads need be considered before designing high perfor-
mance data intensive systems.

We presented existing trends and efforts made by re-
searchers to efficiently handle data intensive workloads. In-
troducing algorithmic optimizations is the most common and
straight-forward approach. Novel high performance setups
are also considered in our study. We found that if the core
kernels of data mining applications are smartly extracted,
high performance setups tend to offer the best speedups. The
prices of custom-logic based reconfigurable systems have
been plummeting in recent years. We use this fact as a moti-
vation and propose a new accelerator-based data mining sys-
tem. This system speeds up the core application kernels by
providing custom logic for the underlying kernel operations.
Our results indicate that such customized setups offer the
best speedups for data mining applications. Overall, our re-

sults stress the need for a better understanding of the runtime
characteristics of data mining applications, especially from a
system perspective. For instance, our studies proved that data
mining applications contain within them several highly scal-
able kernels, which in turn can be scaled using smart hard-
ware techniques to offer better performance.
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