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Abstract—Increasingly complex scientific applications require
massive parallelism to achieve the goals of fidelity and high com-
putational performance. Such applications periodically offload
checkpointing data to file system for post-processing and program
resumption. As a side effect of high degree of parallelism,
I/O contention at servers doesn’t allow overall performance
to scale with increasing number of processors. To bridge the
gap between parallel computational and I/O performance, we
propose a portable MPI-IO layer where certain tasks, such as
file caching, consistency control, and collective I/O optimization
are delegated to a small set of compute nodes, collectively termed
as I/O Delegate nodes. A collective cache design is incorporated to
resolve cache coherence and hence alleviates the lock contention
at I/O servers. By using popular parallel I/O benchmark and
application I/O kernels, our experimental evaluation indicates
considerable performance improvement with a small percentage
of compute resources reserved for I/O.

I. INTRODUCTION

Modern scientific applications are relied on, to simulate

physical and natural phenomenons, instead of carrying out real

experiments in controlled environment. Physicists, astrophysi-

cists and earth scientists require scientific applications to pro-

vide accurate and efficient modeling of natural phenomenons

like nuclear explosion, molecular dynamics, climate modeling,

ocean ice modeling etc. These applications require enormous

computing power during the course of their execution, as

well as huge storage space to store the checkpointing data

generated for post-processing and program resumption. High

Performance Computing is the answer to these crucial require-

ments posed by modern scientific applications. In modern era

of scientific computations parallel scientific applications are

being deployed on high performance computing systems, to

achieve the goals of fidelity, high performance and scalabil-

ity. Although, high performance computing resources provide

massive parallelism and computing power to fulfil the crucial

requirements of the scientific applications, but most of the

high-end applications do not scale beyond few hundreds nodes

[1].

As the number of processors grows to a large number,

achieving high efficiency for computation becomes very dif-

ficult based on Amdahl’s law. In other words, increased I/O

overhead limits the incremental gain in efficiency with large

number of processors. We posed the following question to

several leading application scientists who, as described earlier,

face significant I/O performance problems. “If you had an ac-

cess to a large system, and if we asked you to leave 5 % of the

nodes for the I/O software, and in turn if you are guaranteed

significant improvement in performance, would you accept

such a solution?” To our surprise, without hesitation, there

was a unanimous answer of “yes”. In addition to describing the

state of I/O performance on production systems, this answer

also shows a deep understanding of the efficiency curves on

large-scale systems on the part of application scientists. They

are willing to sacrifice a small fraction of resources (some

nodes and their memory), in order to obtain much better

performance on the I/O system.

Recently, we have been investigating I/O infrastructure on

ultra-scale systems such as, the IBM BlueGene/L (BG/L)

and BlueGene/P (BG/P) systems. Basic architecture of these

systems implies that I/O bandwidth of the system is efficiently

utilized by having separate nodes for performing I/O and

computation, where one I/O node is often assigned to many

compute nodes[2]. For example, in the case of BG/L, one

I/O node performs I/O operations for 8 to 64 processors [3],

[4]. This kind of architecture deceases the chances of possible

disk contention, when thousands of nodes are concurrently

performing I/O in a high performance system. Imagine, if all

the compute nodes start performing I/O operations then there

are enormously high chances of disk contention, and system

will hardly use bandwidth provided by parallel file system.

Most of the nodes will be waiting for acquiring locks and data

disk will be overloaded with the huge number of requests.

We present an I/O Delegate Cache System (IODC) that

organizes system cores into two categories (a) Application

Nodes (b) I/O Delegate Nodes (IOD nodes). I/O Delegate

Cache system is incorporated inside ROMIO [5] which is an

MPI-IO implementation. IODC system intercepts all the I/O

requests initiated by user application running on application

nodes, and redirects them to IOD nodes. Figure 1 shows the

level of our contribution in I/O stack hierarchy of the overall

system. Parallel applications pass their I/O requests to MPI-IO

layer directly or through an interface to MPI-IO e.g., HDF5

[6]. Our system sits in MPI-IO and provides an abstraction

of the underlying parallel file system to the application nodes.

Out of all the nodes, only IOD nodes can access underlying

parallel file system. These IOD nodes optimize I/O accesses

by caching the accessed data in their local memory. Also, they
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Fig. 1. Parallel I/O Stack

detect if multiple requests are accessing contiguous data in file.

They combine multiple small I/O requests into fewer but larger

data access requests. By exploiting processing power and

memory of IOD nodes for performing I/O caching and data

aggregation, we achieve considerably high percentage of I/O

bandwidth improvement. We conducted our experiments using

one I/O benchmark BTIO and two production applications’

IO kernels, FLASH and S3D I/O on popular parallel file

systems GPFS and Lustre. Experimental results show that I/O

bandwidth is improved manyfold by setting aside less than

10% extra nodes to work as IOD nodes.

Rest of the paper is organized as follows; Section II dis-

cusses related research work. It also provides the guidelines

for taking parallel system design decisions. Section III explains

the architecture of IODC in detail. Section IV evaluates and

analyzes the I/O performance of IODC for different I/O bench-

marks on GPFS and Lustre. Section VI draws conclusions and

discusses possible future improvements in the system.

II. RELATED WORK

MPI-IO inherits two important MPI features: MPI commu-

nicators, which define a set of processes for group opera-

tions and MPI derived data types, which describe complex

memory layouts. A communicator specifies the processes that

can participate in a collective MPI operation for both, inter-

process communication and I/O requests to a shared file. File

open requires an MPI communicator to indicate the group of

processes accessing the file. In general, MPI-IO data access

operations can be split into two types: collective I/O and inde-

pendent (non-collective) I/O. Collective operations require all

processes in the communicator to participate. Because of this

explicit synchronization, many collective I/O implementations

may exchange access information amongst all the processes

to generate a better overall I/O strategy. An example of this

is the two-phase I/O technique [7]. Two-phase I/O is used

in ROMIO, a popular MPI-IO implementation developed at

Argonne National Laboratory [8]. To preserve the existing

optimizations in ROMIO, like two-phase I/O, we incorporate

our design in the Abstract Device I/O (ADIO) layer where

ROMIO interfaces with underlying file systems [9].

Client-side file caching is supported in many parallel file

systems; for instance, IBMs GPFS [10], [11] and Lustre [12].

By default, GPFS employs a distributed token-based locking

mechanism to maintain cache coherency on nodes. Lock

tokens must be granted before any I/O operation is performed

[14]. Distributed locking avoids the obvious bottleneck of a

centralized lock manager, by making the token holder act like

local lock authority for granting further lock requests to the

corresponding byte range. A token allows a node to cache

data because this data can not be modified elsewhere without

revoking the token. Lock granularity for GPFS is equal to file

strips size. IBM’s MPI-IO implementation over AIX operating

system uses the data shipping mechanism; files are divided into

equally sized blocks, each of which is bound to a single I/O

agent, a thread in an MPI process. The file block assignment

is done in a round-robin striping scheme. A given file block is

only cached by the I/O agent responsible for all the accesses

to this block. All I/O operations must go through the I/O

agents which then “ship” the requested data to the appropriate

process. Data shipping maintains cache coherency by allowing

at most one cached copy of data amongst all the agents. The

Lustre file system uses a slightly different distributed locking

protocol where each I/O server manages locks for the stripes

of file data it stores. The lock granularity for Lustre is the file

stripe size. If a client requests a lock held by another client, a

message is sent to the lock holder asking to release the lock.

Before a lock can be released, dirty cache data must be flushed

to the servers. Both Lustre and GPFS are POSIX compliant file

systems and therefore respect POSIX I/O atomicity semantics.

To guarantee atomicity, file locking is used in each read/write

call to guarantee exclusive access to the requested file region.

On parallel file systems like Lustre and GPFS where files are

striped across multiple I/O servers, locks can span multiple

stripes for large read/write requests. Lock contention due to

atomicity enforcement can significantly degrade parallel I/O

performance [13].

Shan et.al. conducted a study with principal investigators

of 50 projects on computing platforms of National Energy

Research Supercomputing Center (NERSC) to find out the

I/O trends in real applications [14]. This study shows some

interesting results like, I/O accesses are rarely random and

parallel applications’ write activity is dominated amongst

the overall I/O activities of the system. It is important to

understand these trends, as many of them can help determining

the areas of improvements in order to scale I/O performance

with higher number of nodes. In order to design an optimal

parallel I/O system, we kept these I/O trends in mind while

devising our system. Larkin et. al. discuss the guidelines for

efficient I/O practices for Cray XT3/XT4 system on Lustre

[15]. Some of these suggestions advocate accessing data in

large I/O accesses and using a subset of nodes to perform

I/O operations. In addition to Cray XT3/XT4 system, these

guidelines also apply to other large scale systems as well, so,

we have incorporated the applicable suggestions in our design.

We provide the support of data aggregation by combining

many small I/O requests into fewer but larger I/O request
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before initiating requests to file system. Also, we set aside

a small number of nodes to perform I/O operation instead

of letting all the nodes access the parallel file system. So, by

keeping these trends and guidelines in mind, we designed a I/O

subsystem that optimizes these requests, such that overall I/O

performance is improved. By using IODC, I/O performance

can be considerably improved even for the applications that

do not follow good I/O practices.

Collective buffering approach [16] rearranges data in pro-

cessors’ memory, to initiate optimized I/O requests, thus

reduces the time spent in performing I/O operations. This

scheme requires a global knowledge of I/O pattern in order

to perform optimization. Bennett et.al. present an I/O library

Jovian[17], [18], which uses separate processors called ‘coa-

lescing nodes’ to perform I/O optimization by coalescing small

I/O operations. This approach requires application support to

provide out-of-core data information in order to coalesce the

contiguous data on disk. Our system consists of a portable

MPI-IO plugin, which doesn’t require any global knowledge

of I/O accesses pattern or application support.

III. IO DELEGATE AND CACHE SYSTEM

We propose an additional I/O layer termed as ’I/O Del-

egate Cache System’ (IODC) for MPI applications, which

is integrated into an MPI-IO implementation ROMIO [5] .

This allows I/O performance to scale with processing power

of massively parallel large-scale systems. Lock contention at

disks occurs when two processes compete with each other

to access the same file region. With the increase in number

of processors, I/O request load at data disks increases. Also,

lock acquiring becomes more difficult task, with more number

of competitors trying to acquire lock. This also increases the

number of processors waiting to receive I/O service at any

given time. By introducing additional IOD nodes to delegate

the I/O responsibility, we restrict the maximum number of

processors accessing the file at one time equal to number of

IOD nodes. Also, by deploying a caching system on these

IOD nodes, we provide the benefit of caching and I/O request

alignment with file system stripe size, which further decreases

the chances of lock contention. In short, IODC improves

the parallel I/O performance by reducing the possible disk

contention, storing data in a collective cache system and aggre-

gating small requests into bigger ones. This system organizes

all of the system cores into two categories (a) Application

Nodes (b) I/O Delegate Nodes. Our system sits in ROMIO

and restricts the application nodes to access the underlying

parallel file system. It rather redirects all the I/O operation to

dedicated I/O Delegate (IOD) nodes. IOD nodes are the only

nodes in the system, which can directly read or write a file to

parallel file system. So, if a write request is generated at an

application nodes, its request will be intercepted by our plugin

inside ROMIO and it will be redirected to a IOD node which

is responsible for performing I/O operation for that specific

application nodes. Also data accessed by these nodes is stored

in a collective caching system in IOD node. This cached data

can be re-accessed, hence reducing number of I/O requests to

the disks. These IOD nodes further optimize the I/O accesses

by combining multiple I/O request in to smaller number of

large requests for contiguous data on disk.

A. IODC Interprocess Communication Mechanism

Ratio of application nodes and IOD nodes is a flexible user

controllable parameter. No application related computation is

performed on IOD nodes, likewise, no I/O service task is

carried out by application nodes. Application nodes have all

of their processing power and memory reserved for their own

computation, no memory or processing power is claimed by

IODC. IODC requires a separate set of node, set aside to act

like IOD nodes in addition to application nodes. Application

nodes are mapped to IOD nodes in a sequential pattern. For

example, if the number of application nodes are double of IOD

nodes’, then MPI rank 0 and 1 of application processes will

be mapped to MPI rank 0 of IOD nodes, and so on. For the

purpose of load balancing, application nodes are mapped to

IOD nodes such that equal number of application nodes are

assigned to each I/O Delegate nodes. If number of application

nodes is not perfectly divisible by number of IOD nodes, then

it is made sure that difference between number of application

nodes assigned to any two IOD nodes in the system may not

exceed 1.

MPI Intercommunicator

IODC MPI Communicator

Application nodes MPI Communicator

Fig. 2. MPI Intercommunicator

IODC uses a couple of important MPI features like MPI

communicator, MPI dynamic processes management and MPI

intercommunicator. MPI communicator enables a group of

processes to communicate with each other. MPI dynamic

processes management utility enables one MPI communicator

to launch another application on dynamically created child

MPI communicator. An MPI intercommunicator is established

amongst these parent and child MPI communicators. Using

MPI intercommunicator, processes can communicate across

the application and communicators’ boundary, similarly, they

can communicate under the boundary of single communicator.

So MPI intercommunicator provides a way to communicate

amongst the two groups of processes running two distinct and

independent applications. Figure 2 shows, how IODC scheme

utilizes MPI intercommunicator and MPI dynamic processes

management. At the start of system our IODC is started on

IOD nodes. This system launches a parallel application on

application nodes by dynamically allocating processes and

creating a child MPI communicator. Application nodes and

IOD nodes belong to two different MPI communicators which

communicate with each other through MPI intercommunicator.
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B. IODC System Design

IODC architecture can be understood by Figure 3. As shown

in figure, the core system is divided in two main groups:

application nodes and IOD nodes. All I/O requests generated

from application nodes are transferred to IOD nodes. These

I/O Delegate nodes, then access the parallel file system to

perform the I/O operations requested by application nodes.

Number of IOD node is kept considerably smaller than that

of application nodes.

���� � ��� ���
�

���
�

Application Nodes

File System

Network

Data Disks

I/O Delegate Nodes

Fig. 3. System Architecture

Figure 4 explains the overall system design of IODC. Right

side represents an application node and left side represents an

IOD node mapped to that specific application node. Scientific

computations are carried out on application nodes, which

generate a number of I/O requests for underlying parallel file

system. These I/O requests may include file create, open, read,

write, close, truncate etc. On each application node, IODC

plugin inside ROMIO triggers a redirection of these requests

to IOD node. On IOD node, there is a waiting loop that detects

the incoming requests sent by remote or local communicators.

This loop keeps executing two probing routines one after the

another. One probing routine polls on intercommunicator to

detect incoming requests from any application node, and other

keeps probing on local communicator to detect the requests

from peer IOD nodes. A collective MPI caching system

similar to [19][20][21] is deployed on IOD nodes to optimize

the I/O requests for parallel file systems. Request detector

calls corresponding MPI cache routines for performing I/O

operations requested by remote application node. Collective

MPI cache system completes the requested I/O operation by,

caching the cacheable data (read,writes) in its local buffer

or calling the corresponding system calls. Result of this I/O

request is returned to application node and then computation

at application node is resumed.

When a file is to be opened for the first time by an

application, then this open request is transferred to the IOD

node with MPI rank 0. After opening the file, a unique id

is assigned to this file, which is mapped to system id of the

file to correctly translate the future references to this file. This

unique id is duplicated amongst all the IOD nodes for future

reference. Also, this id is sent back to application node who

originated the request. In future, when any IOD node receives

an I/O request related to same file, IODC will use this unique

id to manage cache data amongst IOD nodes. An application

node sends its I/O requests to the IOD node mapped to it

in static sequential fashion. In case, an IOD node receives a

request to access a block in the file that is cached by another

IOD node, then it will redirect the request to the corresponding

IOD node.

Requests

Cache
Node Request Completed

By Cache

Request Completed

I/O to Disk

Request Detector

Request Detector
Cache Nodes

Application Nodes
Request Detector Appliation Process

IO Request

Cooperative Cache

I/O Operation 
Request Completed

Computation
Scientific

Operations
I/O

Request Generator

Application NodeI/O Delegate Node

Fig. 4. System Design

C. IODC System States

This section discusses the possible states for IOD nodes

during the course of application execution. State diagram in

figure 5 is shown for write only I/O access pattern. Each IOD

node keeps waiting for incoming requests, let’s call this as state

0. IOD node can receive two main categories of requests, (a)

requests from application node (b) requests from a peer IOD

node. When an IOD node receives a write request from an

application node and if write data can fit in cache memory at

IOD node then IOD node will change its state from 0 to 1 and

stores the data in its cache. Note that during the process of

caching some data communication amongst peer IOD nodes

may also be required, which is not shown in this state diagram

for the sake of simplicity. If data doesn’t fit in the cache then

it is directly written to the file on disk and state changed from

0 to 2. If this IOD node is not responsible for caching the file

blocks to be written then it will relay the request to the correct

IOD node. If such request is received by an IOD node then

it changes its state from 0 to 3. Upon reception of a request

from another IOD node, data is received and stored in local

cache memory. After completing caching operation or write

operation to disk IOD node goes back to state 0, which is the

waiting state. If cache residing on a IOD node exhausts or file
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is closed all the data stored in cache memory is flushed to

disk. In that case state changes from 1 or 3 to 2. when system

is idle IOD node will keep waiting in state 0, until it receives

a request to terminate the system.

Read requests are entertained the same way, except direction

of data transfer is inverse. Other non-cacheable requests like

open, close etc. are dealt the same way, except necessary

information to carry out the I/O operation is transferred and

not the write data. Corresponding IOD node performs the

requested I/O operation and go back to the waiting state.

Data Larger
than Cache

Size

Writing
to Disk

Cache Full
or

File Close

Waiting
for some
request an Application Process

Request from

Cache Full
or

File Close

from Request
another

IOD Node

0

1

2

3

it

Receive
Data from 

and cache 
an App Proc

it

Receive
Data from

a peer IOD 
node and cache

Fig. 5. IOD Nodes States for write accesses

Traditional cache benefits include write behind and prefetch

but in parallel system cache provides performance benefits

such as alignment, intermediate buffering and ability to re-

arrange the data before initiating I/O. Collective MPI caching

system’s policies and management details will be discussed in

following section.

D. Cache Metadata Management

Caching scheme logically divides a file into equally sized

pages, each of which can be cached. The default cache

page size is set to the file system block size and is also

adjustable through an MPI hint. A page size aligned with

the file system lock granularity is recommended, since it

prevents false sharing. Cache metadata describing the cache

status of these pages are statically distributed in a round-

robin fashion amongst the MPI processes, which collectively

open the shared file. A modulus operation is required to

find the MPI rank of the process storing a pages metadata.

This distributed approach avoids centralization of metadata

management. Cache metadata includes the MPI rank of the

pages current location, lock mode, and the pages recent

access history. A page’s access history is used for making the

decision of cache eviction and page migration. To ensure cache

metadata integrity (atomic access to metadata), a distributed

locking mechanism is implemented, where each MPI process

manages the lock requests for its assigned metadata. There

are two kind of possible lock modes, shared read locks and

exclusive write locks. Metadata locks must be obtained before

an MPI process can freely access the metadata, cache page,

and the file range corresponding to the page. When a request

to cache pages consecutive in file space are cached at different

MPI processes, all pages must be locked prior to their access.

Since deadlock may occur when more than two processes are

simultaneously requesting locks for the same two pages, we

employ the two-phase locking strategy proposed in [22]. Under

this strategy, lock requests are issued in a strictly increasing

page ID order and the prior page lock must be obtained before

requesting the next lock.
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E. Cache Page Management

To simplify coherence control, we allow at most a single

cached copy of file data among all MPI processes. When

accessing a file page that is not being cached anywhere,

the requesting process will try to cache the page locally, by

reading the entire page from the file system if it is a read

operation, or by reading necessary part of the page if it is a

write operation. An upper bound, by default 1 GB, indicates

the maximum memory size that can be used for caching. If

the memory allocation utility, malloc() finds enough memory

to accommodate the page and the total allocated cache size is

below the upper bound, the page will be cached. Otherwise,

under memory pressure, the page eviction routine is activated.

Eviction is solely based on only local references and a least-

recent-used policy. If the requested file pages are not cached

and the request amount is larger than the upper bound, the

read/write calls will go directly to the file system. If the

requested page is already cached locally, a simple memory

copy will satisfy the request. If the page is cached at a

remote process, the request is forwarded to the page owner. An

example I/O flow for a read operation is illustrated in Figure
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6 with four MPI processes. In this example, process P1 reads

data in file page 7. The first step is to lock and retrieve the

metadata of page 7 from P3 (7 mod 4 = 3). If the page is

not cached yet, P1 will cache it locally (into local page 3)

by reading from the file system, as depicted by steps (2.a)

and (3.a). If the metadata indicates that the page is currently

cached on P2, then an MPI message is sent from P1 to P2

asking for data transfer. In step (3.b), assuming file page 7

is cached in local page 2, P2 sends the requested data to P1.

When closing a file, all dirty cache pages are flushed to the

file system. A high water mark is used in each cache page

to indicate the range of dirty data, so that flushing needs not

always be an entire page.

IV. EXPERIMENT RESULTS

I/O Delegate Cache system implementation is evaluated

on two machines: Tungsten and Mercury, at the National

Center for Supercomputing Applications (NCSA). Tungsten

is a 1280-node Dell Linux cluster, where each node contains

two Intel 3.2 GHz Xeon processors sharing 3 GB of memory.

The compute nodes run a Red Hat Linux operating system

and are inter-connected by both Myrinet and Gigabit Ethernet

communication networks. A Lustre parallel file system version

1.4.4.5 is installed on Tungsten. The lock granularity of Lustre

is equal to file stripe size 512 KB on Tungsten. Output files

are saved in a directory configured with a stripe count of 16

and a 512 KB stripe size. All files created in this directory

share the same striping parameters. Mercury is an 887-node

IBM Linux cluster where each node contains two Intel 1.3/1.5

GHz Itanium II processors sharing 4 GB of memory. Running

a SuSE Linux operating system, the compute nodes are inter-

connected by both Myrinet and Gigabit Ethernet. Mercury runs

an IBM GPFS parallel file system version 3.1.0 configured in

the Network Shared Disk (NSD) server model with 54 I/O

servers and 512 KB file block size. The lock granularity on

GPFS is equal to file stripe size, 512KB on Mercury. Note that

because IBM’s MPI library is not available on Mercury, we

could not comparatively evaluate the performance of GPFS’s

data shipping mode. IODC is implemented in the ROMIO

layer of MPICH version 2-1.0.6, the latest version of MPICH2

at the time our experiments were performed.

For experimentation, we use a 512 KB page size for IODC

system. Setting the cache page size to the file system stripe

size, aligns all the write requests to stripe boundaries and

hence, to lock boundaries. For performance evaluation, we use

one benchmark BTIO, and two I/O kernels of real applications

namely FLASH I/O and S3D I/O. All the charts shown in

this paper, report percentage improvement in I/O bandwidth

for write-only access pattern. The I/O bandwidth numbers are

obtained by dividing the aggregate write amount by the time

measured from the beginning of file open until after file close.

Percentage improvement is obtained by taking a ratio of net

increment in I/O bandwidth and the I/O bandwidth achieved in

native case. So, 100% means that I/O bandwidth with IODC

is two times the native case. In this paper, speedup will refer

to the ratio of I/O bandwidths achieved with IODC and native

case.

As described earlier, by introducing IOD nodes into the

system, we reduce I/O contention at data disks by reducing

number of requests accessing the file system, aligning the

accesses with lock boundary, and caching the accessed data.

For all the experiments, we ran two processes per node for

executing application and one process per node to execute

IODC. We used very small number of IOD nodes as compared

to the number of application processes. In our experimental

evaluation, we kept number of IOD nodes no more than

10% of the number of application processes. For example,

for 144 application processes we used 14 additional nodes as

IOD nodes. In addition to reducing the degree of competition

at data disk, there are number of other factors that play

important role in this performance improvement. Caching at

IOD nodes allows the first process who requests for a page, to

buffer it locally; thereby, taking the advantage of data locality

and increasing the likelihood of local cache hits. We expect

performance improvement to increase with increase in number

IOD nodes for a fixed number of application processes. This

is because, higher number of IOD nodes translates into bigger

cache memory size. With larger cache pool, system won’t start

thrashing soon. It is shown in the charts that in most cases,

for a fixed number of application processes, I/O performance

increases with the increased number of IOD nodes. Also, cache

system detects the overlapping accesses to same lock granu-

larity, and combines multiple small requests into fewer large

requests. As most of the parallel file systems are optimized

for larger requests, IODC decreases the I/O request load on

disks and results in improved data access time. Data accesses

initiated from IOD nodes are aligned on lock boundary of

file system which further reduces the chance of two processes

competing for the file region bounded by one locking stripe.

There are certain overheads associated with IODC. IODC

adds an extra step of passing data through IOD nodes, which

incurs extra data communication cost amongst application

processes and IOD nodes. Generally, we expect percentage

improvement to increase with number of application processes

because we have higher potential to remove lock contention

in case of large number of application processes. In some

cases percentage improvement starts decreasing for further

increase in the number of application processes. This can

be explained by the fact that amount of data communicated

amongst application processes and IOD nodes also increases,

which can limit the performance improvement beyond cer-

tain number of application processes. This maximum optimal

number of application processes depends on access pattern

of application, underlying parallel file system and ethernet

communication protocol. We conducted our experiment using

TCP/IP, we expect to get even better performance results in

case of Myrinet.

For one problem size, BTIO benchmark generates a check-

pointing file of fixed size no matter how many processes take

part in writing. So, with the increase in number of processes,

size of data written by each process decreases. In contrast, for
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FLASH and S3D I/O, all of the process writes a fixed size

of data. So, data written to files is directly proportional to the

number of processes executing the benchmark. We will keep

this fact into account while analyzing the performance results.

Note that although no explicit file synchronization is called in

these benchmarks, closing files will flush all the dirty data.

A. BTIO Benchmark

Developed by NASA Advanced Supercomputing Division,

the parallel benchmark suite NPB-MPI version 2.4 I/O is

formerly known as the BTIO benchmark [23]. BTIO presents

a block-tridiagonal partitioning pattern on a three dimensional

array across a square number of processes. Each process is

responsible for multiple Cartesian subsets of the entire data set,

whose number increases with the square root of the number

of processors participating in the computation. BTIO provides

options for using either MPI collective or independent I/O. In

BTIO, 40 arrays are consecutively written to a shared file by

appending one after another. Each array must be written in a

canonical, row-major format in the file. We evaluate the array

dimensionality 102× 102× 102 and 162× 162× 162 and an

aggregate write amount for a complete run of 1.58 GB and

6.34 GB respectively. With this fixed aggregate write amount,

we evaluate BTIO using different number of MPI processes;

therefore, the amount written by each process decreases as the

number of processes increases.

Figure 7 includes the percentage improvement in I/O band-

width achieved for BTIO 162 × 162 × 162 array size on

GPFS and Lustre parallel file systems. In figures 7(a) and

7(d) percentage I/O bandwidth improvement is shown for 144,

256, 324 and 400 application processes, with no more than

10% additional processors as IOD nodes. Each line in the

chart represents fixed number of application processes with

varying number of IOD nodes. We achieve considerably higher

percentage I/O bandwidth improvement by putting in less

than or equal to 10% extra resources. In case of BTIO, data

written by each process decreases as the number of processes

increases. So as the number of processors increases, parallel

I/O performance improvement is compromised. IODC enables

aggregation that combines many small I/O requests into fewer

but larger I/O accesses. By combining requests we reduce the

number of requests sent to disk, as well as gain the benefit of

accessing large contiguous data on file.

As described earlier, the distributed lock protocol used

in parallel file systems maintains the cache metadata in-

tegrity, this protocol incurs a certain degree of communication

overhead. It can be seen in the figure 7(d) that for 400

processes considerably higher bandwidth improvement has

been achieved on Lustre as compared to GPFS. This can be

explained by the difference in lock management protocol of

these two parallel file systems. To enforce the atomicity, no

two processes are allowed to access the same file block at

one time. As we increase the number of processes, possibility

of lock contention increases as more number of processes are

competing with each other to access the same file. It is an

established fact that lock contention can drastically degrade

I/O performance[13]. So, for largest number of application

processes, performance improvement achieved on Lustre is

considerably higher than GPFS. This can be explained by the

fact that without IODC, Lustre’s lock contention resolving

protocol takes more time as compared to the one in GPFS.

As we increase the number of application processes, lock

contention problem becomes more serious. IODC reduces

degree of lock contention by not letting application processes

access the file system, so, there is more potential of lock

contention avoidance on Lustre.

As shown in the Figure 7(d), if number of application

processes increases, percentage improvement also tends to

increase. This is because of the fact that with large number

of processors I/O disk contention becomes very critical per-

formance limiting factor. So, for large number of application

processes IODC gets more margin of enhancing performance.

For each collective write operation in BTIO, the aggregate

write amount is 162.18 MB. When partitioned evenly among

all MPI processes, the file domains are not aligned with the

file system lock boundaries. Thus, conflict locks due to false

sharing occur and hence serialize the concurrent write requests.

IODC further improves performance by aligning processor

data distribution with file layout. By keeping lock boundary of

file system aligned with cache page size, possible contention

at the lock boundary is decreased. As BTIO generates the

same size of file, so with the increase in application processes,

data is divided in smaller chunks and data communication cost

between application processes and IOD nodes increases. This

effect can also be seen in the figure 7(a) but the case of Lustre

dominates overall performance improvement as expected. For

fixed number of application processes, we expect performance

improvement to increase with increasing number of IOD

nodes because of larger cache pool and increased degree of

communication parallelism. But figure 7(a) shows that perfor-

mance improvement doesn’t scale with number of IOD nodes.

This can be explained by the increased data communication

overhead amongst peer IOD nodes with increasing number

of IOD nodes. This overhead effect is not that evident in

figure 7(d) as Lustre provides higher margin of lock contention

avoidance than GPFS. So, lock contention avoidance seems to

dominate in overall performance improvement. Figures 7(a)

and 7(d) show that 3 to 4 times speedup has been achieved in

some cases on GPFS and Lustre by just allocating IOD nodes

no more than 10% of application processes. We are not giving

detailed evaluation analysis for BTIO 102 × 102 × 102 array

size but a summary of those results is given in section V.

B. FLASH I/O Benchmark

The FLASH I/O benchmark suite [24] is the I/O kernel

of the FLASH application, a block-structured adaptive mesh

hydrodynamics code that solves fully compressible, reactive

hydrodynamic equations, developed mainly for the study of

nuclear flashes on neutron stars and white dwarfs [25]. The

computational domain is divided into blocks that are dis-

tributed across a number of MPI processes. A block is a three-

dimensional array with an additional 4 elements as guard cells
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Fig. 7. Percentage Improvement in I/O Bandwidth for BTIO, FLASH and S3D I/O with GPFS and Lustre

in each dimension on both sides to hold information from

its neighbors. In our experiments, we used 8 × 8 × 8 and

16 × 16 × 16 block size. There are 24 variables per array

element, and about 80 blocks on each MPI process. So, total

of 7.5 MB and 60 MB data is generated per process respec-

tively. Variation in block numbers per MPI process is used

to generate a slightly unbalanced I/O load. Since the number

of blocks is fixed for each process, increasing the number of

MPI processes linearly increases the aggregate write amount.

FLASH I/O produces a checkpoint file and two visualization

files containing centered and corner data. The largest file is

the checkpoint, the I/O time of which dominates the entire

benchmark. FLASH I/O uses the HDF5 I/O interface to save

data along with its metadata in the HDF5 file format. Since

the implementation of HDF5 parallel I/O is built on top of

MPI-IO [26], the performance effects of I/O delegate caching

system can be observed in overall FLASH I/O performance.

To eliminate the overhead of memory copying in the HDF5

hyper-slab selection, FLASH I/O extracts the interiors of the

blocks via a direct memory copy into a buffer before calling

the HDF5 functions. There are 24 I/O loops, one for each of

the 24 variables. In each loop, every MPI process writes into a

contiguous file space, appending its data to the previous ranked

MPI process; therefore, a write request from one process

doesn’t overlap or interleave with the request from another. In

ROMIO, this non-interleaved access pattern actually triggers

the independent I/O subroutines, instead of collective subrou-

tines, even if MPI collective writes are explicitly called. Note

that FLASH I/O writes both array data and metadata through

the HDF5 I/O interface to the same file. Metadata, usually

stored at the file header, may cause unaligned write requests

for array data when using native MPI-IO.

Figures 7(b) and 7(e) show percentage improvement in I/O

bandwidth for 8 × 8 × 8 array size for 128, 256, 324, 400

application processes on GPFS and Lustre. For the FLASH

I/O pattern, forcing collective I/O creates a balanced work-

load, but not without some extra communication costs. The

aggregate write bandwidth is calculated by dividing the data

size written to all three files by the overall execution time.

Similar to our analysis for BTIO, such alignment significantly

eliminates the lock contention that can otherwise occur in

the underlying GPFS and Lustre file systems from the use

of native MPI-IO. As mentioned earlier, I/O performance

improvement is expected to increase with increased number

of application processes on Lustre. Figure 7(e) shows that

maximum performance improvement achieved by increasing

the number of application processes. For a fixed number

of application processes, performance improvement doesn’t

consistently scale up. This phenomenon can be explained

by FLASH I/O pattern where write data generated by each

process is contiguous and not interleaved.

In order to generate a slightly unbalanced I/O load, FLASH
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I/O assigns process rank i with 80 + (i mod 3) data blocks.

Hence, the subarray size are 20, 20.25, or 20.5 MB, which

generates many write requests that are aligned with lock

boundaries. In this situation the improvement margin for IODC

is slim. However, we still see considerably high improvement

in all cases and these improvements shall be attributed to

the I/O aggregation by the file caching. Figure 7(b) shows a

relatively regular I/O performance improvement with increased

number of IOD nodes. There is also a smooth increase in per-

formance improvement with increasing number of application

processes. There are some exceptions which can be explained

by the effects of IODC overheads described earlier. Figures

7(b) and 7(e) show that for 400 processors maximum speedup

of 4 and 6 is achieved on GPFS and Lustre respectively by

just allocating IOD nodes no more than 10% of application

processes. We are not giving detailed evaluation analysis for

FLASH 16×16×16 array size but a summary of those results

is given in section V.

C. S3D I/O Benchmark

The S3D I/O benchmark is the I/O kernel of the S3D

application, a parallel turbulent combustion application using

a direct numerical simulation solver developed at Sandia

National Laboratories [27]. S3D solves fully compressible

Navier-Stokes, total energy, species and mass continuity equa-

tions coupled with detailed chemistry. The governing equa-

tions are solved on a conventional three-dimensional structured

Cartesian mesh. A checkpoint is performed at regular intervals,

and its data consists primarily of the solved variables in 8-byte

three-dimensional arrays, corresponding to the values at the

three-dimensional Cartesian mesh points. During the analysis

phase the checkpoint data can be used to obtain several more

derived physical quantities of interest; therefore, a majority

of the checkpoint data is retained for later analysis. At each

checkpoint, four global arrays are written to files and they

represent the variables of mass, velocity, pressure, and tem-

perature, respectively. Mass and velocity are four-dimensional

arrays while pressure and temperature are three-dimensional

arrays. All four arrays share the same size for the lowest three

spatial dimensions X, Y, and Z, and they are all partitioned

among MPI processes along X-Y-Z dimensions in the same

block partitioning fashion. The length of the fourth dimension

of mass and velocity arrays is 11 and 3, respectively, and

not partitioned. In the original S3D, the I/O is programmed

in Fortran I/O function and each process writes all its sub-

arrays to a separate file at each checkpoint. We added the

functionality of MPI-IO to write the arrays into a shared file

in their canonical order. With this change, there is only one

file created per checkpoint, regardless of the number of MPI

processes used. For performance evaluation, we keep the size

of partitioned X-Y-Z dimensions a constant 25× 25× 25 and

35 × 35 × 35. This produces about 1.9 MB and 5.2 MB of

write data per process per checkpoint respectively. Similar to

FLASH I/O, for fixed number of application processes we

increase the number of IOD nodes and percentage bandwidth

improvement increases with it.

Figures 7(c) and 7(f) show percentage bandwidth improve-

ment for S3D I/O benchmark with 25 × 25 × 25 array size,

on 128, 256, 324, 400 application processes. Figure 7(c)

shows close to expected performance improvements pattern.

Performance improvement achieved tends to increase with the

increasing number of application processes because of higher

margin of lock contention prevention. Also, for fixed number

of application processes, performance improvement tend to

increase with increasing number of IOD nodes because of

better disk utilization, bigger cache pool and alignment. As

for S3D I/O benchmark, total data written to disk increases

with the number of application processes, we can see that for

400 application processes effect of communication overhead

seems to reflect more than 324 case. Figure 7(f) also shows

expected behavior up till 324 application processes but for 400

application processes, performance improvement decreases

considerably. We are looking into details of S3D’s I/O access

pattern and underlying file system protocol to understand the

behavior of such unexpected cases. S3D I/O improvement is

not as significant as FLASH I/O and BTIO. This is owing

to the number of collective I/O made for each file. In each

checkpoint, S3D I/O makes 4 collective writes to save the 4

arrays into a shared file. At the time the file is closed, all

cached data must be flushed. Therefore, there are not much

I/O aggregation effect that can be expected in the S3D I/O

pattern. We are not giving detailed evaluation analysis for S3D

I/O 35× 35× 35 array size but a summary of those results is

given in section V.

V. EVALUATION SUMMARY & ADDITIONAL EVALUATION

There must be an optimal number of IOD nodes for each

specific case, which depends on access pattern of application,

size of communicated data and underlying communication

protocol. IODC will not show much of a performance im-

provement if: (a) I/O access generated by application are

already aligned with file system lock boundary. (b) An ap-

plication generates I/O accesses that are small enough to fit

in the local cache. (c) If an application generates too large

of the I/O accesses to overwhelm the memory of IOD nodes

(d) A very small number of accesses are generated per file

or (e) Network communication is very slow and overhead

of IODC may become very significant. Some of the cases

show unexpected behavior, for example, figure 7(e) shows

that percentage performance improvement for all application

processes converges for 16 IOD nodes. As chart shows per-

centage improvement and not absolute bandwidth, we can say

that as caching and alignment benefit depends on number of

IOD nodes, so approximately similar benefits are achieved

for different number of application processes. Although for

higher number of application processes we get more margin

of lock contention reduction but it may be possible that for

16 IOD nodes I/O bandwidth provided by file system is

under-utilized and becomes the restricting factor. As already

discussed, figure 7(a) also shows some irregular performance

improvement with varying number of IOD nodes. Figure 7(f)

shows expected behavior up till 324 application processes
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Fig. 8. Evaluation Summary of BTIO, FLASH and S3D I/O with GPFS and Lustre

but for 400 application processes, performance improvement

decreases considerably. We are looking into details of S3D

I/O’s I/O access pattern and underlying file system protocol

to understand the behavior of such unexpected cases. But we

are looking into more details of access patterns of different

benchmarks and behavior of underlying parallel file systems

to better understand and solve the problem.

By using IODC we observe I/O performance improvement

in all the cases of BTIO, FLASH and S3D I/O shown

above. Figure 8 sums up already presented results taken on

Lustre and GPFS. These charts demonstrate the I/O bandwidth

improvement observed with FLASH 8 × 8 × 8, S3D I/O

25 × 25 × 25 and BTIO 162 × 162 × 162. Please note that

for the first cluster of histograms, BTIO was executed for

144 applications nodes, whereas FLASH and S3D I/O were

executed on 128 application processes. Figures 8(a),8(b),8(c)

and 8(d) show that by using only 2-3% and 9-10% additional

nodes as IOD nodes, we achieved considerable performance

improvement for all the applications with GPFS and Lustre

respectively.

We also conducted our experiment with FLASH 16× 16×
16, S3D I/O 35×35×35 and BTIO 102×102×102. Please note

that array size of FLASH and S3D I/O is increased, while array

size of BTIO is decreased in this second set of experiments.

Figure 9 shows that for FLASH and S3D I/O, percentage im-

provement decreases by increasing the array size to 16×16×16

and 35×35×35 respectively. As already mentioned, extra cost

of IODC includes extra communication time spent between

application processes and IOD node. This communication is

performed through high speed connection network so it is

generally very small as compared to time spent in accessing

file system. As array size increases, processors generates more

data to be communicated to IOD nodes and communication

time between application and IOD nodes becomes significant.

So, I/O performance improvement is effected for larger array

size. Please note that smaller array size has been used for

BTIO case, that is why we don’t see any less performance

improvement than achieved in previous set of experiments.

Although Graphs in Figure 9 show that average performance

improvement is lesser as compared to the smaller array size,

but still some performance improvement has been achieved as

compared to the native case. Only exception is S3D I/O for

256 application processes on GPFS Figure9(a) case, which

gives exactly the same performance as the native case.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed IODC, an MPI-IO layer for large-

scale parallel applications, which enables I/O performance

of the system to scale with computational parallelism. IODC

intercepts the I/O requests generated by application and opti-

mizes them before accessing the file system. IODC requires

additional compute nodes to perform I/O optimizations before
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Fig. 9. Evaluation Summary of BTIO, FLASH and S3D I/O benchmarks (with different application data sizes) with GPFS and Lustre

initiating I/O requests to underlying filesystem. Our system

evaluation demonstrates that by using only less than or equal to

10% extra compute nodes, we achieve very high performance

improvement in I/O bandwidth. Performance improvement

depends on many factors, like I/O access pattern of application,

parallel file system protocol, number of application processes,

number of IOD nodes, data size and underlying network

protocol etc. We conclude that for getting optimal performance

improvement, it is important to deeply understand all of these

factors to achieve correct combination of them. Currently, we

are using synchronized writes to the file system, so an IOD

node either receives data from some application process or

writes to the file system at one specific time. As a part of our

future research, we are planning to use asynchronous writes

which will enable overlapping between data communication

and file system access procedures. In addition, to enable

asynchronous writes we plan to flush dirty data to the file

system during the execution, instead of doing it at file close.

This will also help overlapping I/O access time with data

communication amongst application processes and IOD nodes,

and amongst the peer IOD nodes.
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