
High Performance Parallel/Distributed Biclustering Using Barycenter

Heuristic

Arifa Nisar∗ Waseem Ahmad† Wei-keng Liao‡ Alok Choudhary §

Abstract

Biclustering refers to simultaneous clustering of objects and

their features. Use of biclustering is gaining momentum

in areas such as text mining, gene expression analysis and

collaborative filtering. Due to requirements for high per-

formance in large scale data processing applications such

as Collaborative filtering in E-commerce systems and large

scale genome-wide gene expression analysis in microarray ex-

periments, a high performance prallel/distributed solution

for biclustering problem is highly desirable. Recently, Ah-

mad et al [1] showed that Bipartite Spectral Partitioning,

which is a popular technique for biclustering, can be refor-

mulated as a graph drawing problem where objective is to

minimize Hall’s energy of the bipartite graph representation

of the input data. They showed that optimal solution to this

problem is achieved when nodes are placed at the barycenter

of their neighbors. In this paper, we provide a parallel algo-

rithm for biclustering based on this formulation. We show

that parallel energy minimization using barycenter heuristic

is embarrassingly parallel. The challenge is to design a bi-

cluster identification algorithm which is scalable as well as

accurate. We show that our parallel implementation is not

just extremely scalable, it is comparable in accuracy as well

with serial implementation. We have evaluated proposed

parallel biclustering algorithm with large synthetic data sets

on upto 256 processors. Experimental evaluation shows large

superlinear speedups, scalability and high level of accuracy.

1 Introduction

Biclustering (Subspace Simultaneous Clustering) is a
very useful technique for text mining, collaborative fil-
tering and gene expression analysis and profiling [2] [3].
Recently, it has gained increasing popularity in the anal-
ysis of gene expression data [3] . Biclustering is sig-

∗Department of Electrical Engineering and Computer Science,

Northwestern University.
†Current Affiliation:A9.COM, Research was carried out when

author was with ECE department at University of Illinois,

Chicago.
‡Department of Electrical Engineering and Computer Science,

Northwestern University.
§Department of Electrical Engineering and Computer Science,

Northwestern University.

nificantly useful and considerably harder problem than
traditional clustering. Whereas a cluster is a set of ob-
jects with similar values over the entire set of attributes,
a bicluster can be composed of objects with similarity
over only a subset of attributes. Many clustering tech-
niques such as those based on Nearest Neighbor Search
are known to suffer from ”Curse of Dimensionality” [4].
With large number of dimensions, similarity functions
such as Euclidean distance tend to perform poorly as
similarity diffuses over these dimensions. For example,
in text mining, the size of keywords set describing dif-
ferent documents is very large and yields sparse data
matrix [5]. In this case, clusters based on the entire
keywords set may have no meaning for the end users.

Biclustering finds local patterns where a subset of
objects might be similar to each other based on only a
subset of attributes. The comparison between biclus-
ters and clusters is illustrated in Figure 1. Figure 1(a)
demonstrates the concept of clusters and 1(b) demon-
strates the biclusters in input data matrix. Note that
biclusters can cover just part of rows or columns and
may overlap with each other as shown in figure 1(b).
Biclustering process can generate a wide variety of ob-
ject groups that capture all the significant correlation
information present in a data set. Biclustering has be-
come very popular in discovering patterns from gene mi-
croarray experiments data. Since a bicluster can iden-
tify patterns among a subset of genes based on a subset
of conditions, it therefore models condition-specific pat-
terns of co-expression. Moreover, biclustering can iden-
tify overlapping patterns thus catering to the possibility
that a gene may be a member of multiple pathways.

Unprecedented growth in web related text based
data repositories [6] and evolution of large biological
data sets [7] has resulted into the need of high per-
formance biclustering algorithms in order to cope with
the largeness of the data sets efficiently. Given the
memory size limit in single processor machines, paral-
lel/distributed realization of the biclustering algorithms
is desirable to enable scalable applications for arbitrarily
large data sets.

Distributed solutions for biclustering problem be-
come essential also when the underlying data is inher-

1050 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Cluster 1

Cluster 2

(a) Clusters of Objects.

Bicluster 1

Bicluster 3

Bicluster 2

(b) Biclusters of Objects.

Figure 1: Illustration of Clusters and Biclusters

ently distributed in nature. Consider the example of a
retail store chain such as Wal-Mart who have numerous
stores spread across different parts of the world. The
consumer transaction data gets stored in these stores
such that users are different across stores but items are
generally the same. It can be viewed as row-wise distri-
bution of the customer transaction data. Biclustering
of this distributed data can be carried out in two ways.
One is to transfer the data at a central location and
perform subsequent sequential mining. The other way
is to perform distributed biclustering of the data. The
former approach has serious scalability issues as it is not
feasible to transfer data from thousands of locations to
a central location reliably and efficiently. Central ap-
proach is also harder to adopt because of security and
privacy issues. This leaves us with the task of developing
distributed solution to the biclustering problem. There
has already been some work done in parallel/distributed
biclustering area specially in context of document-word
co-clustering [8], collaborative filtering for online rec-
ommendation systems [9] and for gene expression anal-
ysis [10].

Bipartite Spectral partitioning is a powerful tech-
nique to achieve biclustering. Normalized cut is the
most popular objective function for spectral partition-
ing problem [11], [12]. In the absence of a polynomial
time exact solution for this problem, emphasis is on find-
ing efficient heuristics. A popular implementation [12]
requires computation of the Fiedler vector for Lapla-
cian matrix of input data. Its computation complex-
ity is quadratic in data size and hence not suitable
for large data. Recently Ahmad et al. [1] proposed
a new formulation of the spectral partitioning prob-
lem as Graph Drawing(GD) problem. They showed
that minimization of Hall’s energy function [1] corre-
sponds to finding the normalized cut of the bigraph.
Moreover, they also showed that an optimal solution to
Hall’s energy minimization problem is achieved by plac-
ing each node at the barycenter of its neighbors. Based
on these results, they proved that Barycenter heuris-

tic can provide a scalable linear time solution to bipar-
tite spectral partitioning problem. In this paper, we
study the effectiveness of this approach for dealing with
parallel/distributed biclustering problem in large scale
datasets.

Going by the above-mentioned retail chain scenario,
we assume a horizontal partitioning of the data where
each location has the same feature space but objects
are different. Similar assumptions were made in [8]
and [9]. The parallel implementation is divided in to
three stages. First stage involves parallel implementa-
tion of barycenter heuristic for crossing minimization.
Identification of local biclusters is part of second stage.
The third stage involves determination of global biclus-
ters at each processor. This is accomplished by virtue
of comparison of local biclusters with bicluster repre-
sentatives received from other processors. A bicluster
representative is merely a vector composed of means of
bicluster columns over all rows of the bicluster. Each
processor performs a Euclidean distance based similar-
ity comparison with bicluster representatives received
from other processors. The similar biclusters are sub-
sequently merged to obtain global biclusters. Clearly
during both stages of communication, the size of com-
munication is bounded by the number of columns in the
data matrix.

We show that parallel/distributed implementations
for most of the existing biclustering algorithms, incur
communication overhead which grows at least linearly
with the size of rows. On the other hand, proposed par-
allel algorithm of crossing minimization based approach
being independent of the number of rows, has a signif-
icant advantage for huge data sets on a large number
of processors. We show that this efficient distributed
implementation is comparable in accuracy to the se-
quential one [1]. We have evaluated the performance
and accuracy of parallel biclustering algorithm on large
data sets comprising of millions of rows. The evaluation
results are discusses in detail in Section 6.

Organization: Rest of the paper is organized as
follows. We discuss related work in section 2, section 3
talks briefly about the sequential biclustering algorithm,
section 4 proposes a new model for parallel biclustering
using barycenter heuristic and provides an efficient
algorithm. Section 5 discusses the complexity of the
proposed scheme. Experimental framework is given in
Section 6, conclusions are drawn in Section 7.

2 Related Work

Recently, there have been some research efforts aimed
at solving parallel biclustering problem. ParRescue [8]
is one such solution which is based on Minimum Sum-
Squared Residue(MSSR) clustering algorithm of Dhillon

1051 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

et al [13]. In our view, MSSR based biclustering ap-
proach inherently suffers from following two problems.

1. MSSR based biclustering approach is unable to de-
termine overlapping biclusters. Overlapping biclus-
ters are highly desired in emerging application ar-
eas such as gene expression analysis and collabora-
tive filtering [14].

2. In this approach, row and column clusters are sepa-
rately identified. It is unclear how these separately
identified row and column clusters can lead to an
effective biclustering solution.

3. The parallel solution incurs an O(t(pn(k+l))) com-
munication overhead where t is the total number of
iterations, p is the number of processors, n is the
number of columns and k and l refer to row and col-
umn clusters respectively. As we show later, this
communication overhead is around (k + l) times
more than introduced by our implementation.

4. Finally, we believe that the MSSR based approach
suffers from the initialization problem. Note that
this algorithm initializes cluster and column indi-
cator matrices randomly. This random assignment
determines the quality of overall clustering solution
in some cases which is a drawback. Moreover, the
algorithm also requires the user to specify number
of row and column clusters. Since these numbers
have strong impact on final output clusters, the al-
gorithm has undesirable dependence on these input
parameters. Note that barycenter heuristic based
biclustering algorithm does not suffer from these
drawbacks.

Dhillon et al in [15] gave an information theoretic
biclustering (Co-Clustering) algorithm. They treat the
(normalized) non-negative contingency table as a joint
probability distribution between two discrete random
variables that take values over the rows and columns.
Their subsequent work [16] provided a Bregman Diver-
gence based loss function which was applicable to all
density functions belonging to the exponential family.
Bregman Divergence is defined as follows [17].

If f is a strictly convex real-valued function, the
f -entropy of a discrete measure p(x) ≥ 0 is defined by

Hf (p) = −
∑
x

(f(p(x))

and the Bregman divergence Bf (p; q) is given as

(2.1)
Bf (p; q) = −

∑
x

f(p(x))−f(q(x))−∇f(q(x))(p(x)−q(x))

When f(x) = x log x, Hf is the Shannon entropy
and Bf (p; q) is the I-divergence, when f(x) = − log(x)
we get the Burg entropy and discrete Itakura-Saito
distortion Bf (p; q) =

∑
x(log q(x)

f(x) + p(x)
q(x) − 1)

A parallel biclustering (co-clustering) framework
was also proposed in [9] which is aimed at providing
scalable solution to the collaborative filtering problem
for online recommendation systems. Their contribution
is based on parallelization of weighted biclustering (co-
clustering) algorithm of [16]. The paper does not
describe the parallel algorithm in great detail. In
their theoretical analysis, they suggest that the overall
computation time of the algorithm is O(mn+mkl+nkl

N +
Nkl) whereN is number of processors, m and n are rows
and columns respectively. Also k and l are number of
column clusters and number of row clusters respectively.
They have not fully discussed the communication cost
of their approach. It is interesting to note that their
graph on execution time with increasing number of
processors (Figure 4 of [9]) shows that the execution
time for BookCrossing dataset is around 30 seconds for
a single processor case. While the execution time in
case of 15 processors has decreased only by a factor
of 3 to 10 seconds. This indicates that a 15 times
increase in number of processors has only resulted in
3 times improvement in execution time. Moreover,
the curve essentially straightens up (saturates) right
after 8 processor case. Clearly the algorithm does
not have a linear speed-up characteristics. We believe
this is because of high communication cost incurred
during accumulation of global matrix averages. On the
other hand, our proposed parallel implementation of
barycenter heuristic based biclustering is able to attain
super-linear speedups for even hundreds of processors.

3 Biclustering using Sequential Barycenter
Heuristic

3.1 Preliminaries: Throughout the paper, we de-
note a matrix by capital boldface letters such as G,I
etc. Vectors are denoted by small boldface letters such
as p and matrix elements are represented by small let-
ters such as wij . Also, we denote a graph by G(V,E)
where V is the vertex set and E is the edge set of the
graph. Moreover each edge, denoted by {i, j}, has a
weight wij . The adjacency matrix of G, denoted as G,
is defined as

G =
{
wij if there is an edge {i, j}
0 otherwise

}
Definition 3.1. Bipartite Graph: A graph G(V,E) is
termed as Bipartite if V = V0 ∪ V1 where V0 and V1 are
the disjoint sets of vertices (i.e. V0 ∩ V1 = φ) and each
edge in E has one end point in V0 and the other end

1052 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

point in V1.

We consider weighted bipartite graph
G(V0, V1, E,W) with W = (wij) where wij > 0
denotes the weight of the edge {i, j} between vertices i
and j. Moreover, wij = 0 if there is no edge between i
and j.

For above mentioned retail chain example, users are
represented by vertex set V0 and items are represented
by vertices in V1. The weight matrix W, in this case,
represents the quantity of each item bought by each
user. Generally, in microarray experiment data, genes
and conditions are represented by V0 and V1 vertex
sets respectively. The edge weight wij represents the
response of i’th gene to j’th condition. Similar is
the case for document-word data where documents are
represented by V0 vertex set and words are represented
by V1 vertex set. In this case, the matrix W is the term
frequency matrix for the whole corpus.

In graph theory, a cut is a partition of the vertices
of a graph into two sets. Formally, for a partition of
vertex set V into two subsets S and T , a cut can be
defined as follows

cut(S, T) =
∑

i∈S,j∈T
wij

This definition of cut can easily be extended to k vertex
subsets,

cut(V1, V2, . . . , Vk) =
∑
i<j

cut(Vi, Vj)

It was shown in [12] that partitioning (clustering)
of vertices on one layer of the bipartite graph will
induce a specific clustering of vertices on the other layer
which then itself induces a new clustering on the first
layer. This recursive process would yield the ”best”
clustering of vertices on both layers when it corresponds
to a partitioning of the graph such that the crossing
edges between partitions have minimum weight. This
essentially implies

cut(V01 ∪ V11, V02 ∪ V12, . . . , V0k ∪ V1k) =
minV1,V2,...,Vk

cut(V1, V2, . . . , Vk)

where V1, V2, . . . , Vk is any partitioning of the over-
all Vertex set V = V0 ∪ V1 into k vertex subsets. And
V0k and V1k denote the k’th subsets of the two groups
of vertices in a bipartite graph.

Min-cut may result in unbalanced partitions. The
solution is to employ normalized cut instead. Minimum
Normalized cut for two partitions S and T can be
defined as

(3.2) Ncut(S, T)min =
cut(S, T)
vol(S)

+
cut(S, T)
vol(T)

Here vol(S) refers to the total weight of all edges
originating from group S. Normalized cut yields more
balanced partitioning.

It is well known that graph partitioning problem is
NP-complete [18]. Many heuristic methods exist that
can find the local minimum of the problem. Spectral
graph partitioning heuristics based on finding the nor-
malized cut of the graph are known to perform well [11]
[12].

Definition 3.2. Bipartite Drawing: A bipartite draw-
ing of bigraph G is the embedding of its vertex sets V0

and V1 onto distinct points on two horizontal lines y0, y1
respectively while edges are drawn by straight line seg-
ments.

Definition 3.3. Hall’s Energy Function for a Bipar-
tite Drawing: Let h(vk) be the x-coordinate of vk ∈ V ,
then the energy of bipartite drawing is defined as

E =
1
2

n∑
i,j=1

wij(h(vi)− h(vj))2

Hall’s energy function essentially assigns similar co-
ordinates to vertices that are connected by edges with
large weights. If the edges indicate the similarity be-
tween the vertices, minimization of Hall’s energy would
amount to bring similar vertices together. Intuitively,
it can also be thought of as a process where graph is
decomposed into clusters of vertices such that all ver-
tices in a clusters are tightly connected to other vertices
in the same cluster while they are loosely connected to
vertices in other clusters. This essentially corresponds
to Normalized-cut (Ncut). Below we give a formal proof
for this intuition.

Theorem 3.4. If q = (q1, q2, . . . , qn)T is the general-
ized partition vector as defined in [12], and L is the
Laplacian matrix corresponding to the given graph then
Hall’s Energy is

E = qTLq =
1
2

n∑
i,j=1

wij(qi − qj)2

Proof.

E =
1
2

n∑
i,j=1

wij(qi − qj)2

=
1
2

n∑
i,j=1

wijq
2
i +

1
2

n∑
i,j=1

wijq
2
j −

n∑
i,j=1

wijqiqj

1053 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Since W is symmetric so wij = wji

E =
n∑

i,j=1

wijq
2
i −

n∑
i,j=1

wijqiqj

=
n∑
i=1

 n∑
j=1

wij

 q2i −
n∑

i,j=1

wijqiqj .

Since wii = 0,∀i

E =
n∑
i=1

 n∑
j=1

wij

 q2i −
n∑
i=1

n∑
j=1,j 6=i

wijqiqj

=
n∑
i=1

Liiq
2
i +

n∑
i=1

n∑
j=1,j 6=i

Lijqiqj

=
n∑

i,j=1

Lijqiqj

= qTLq

Above theorem shows that minimization of Hall’s en-
ergy corresponds to finding the normalized cut of the
graph. Now we will show that assignment of x-
coordinates to each node based on barycenter of its
neighbors results in optimal minimum value for Hall’s
energy function.

Theorem 3.5. The minimum value of Hall’s energy
function is achieved when

h(vi) =

∑n
j=1 wijh(vj)∑n

j=1 wij

i.e. each node is assigned a new co-ordinate value which
is the barycenter of its neighbors’ co-ordinates.

Proof. Since Hall’s energy function is a convex function,
we can determine its minimum value by simply comput-
ing ∂E

∂h(vi)
= 0.

∂E
∂h(vi)

=
∂

∂h(vi)
1
2

n∑
i,j=1

wij(h(vi)− h(vj))2 = 0

=
n∑

i,j=1

wij(h(vi)− h(vj)) = 0

h(vi) =

∑n
i,j=1 wijh(vj)∑n

j=1 wij

It is clear from Theorem 3.5 that a bipartite drawing
which assigns each node an x-coordinate that is barycen-
ter of its neighbors, would provide optimal solution to
Hall’s energy minimization problem for the given bipar-
tite graph. Also, from Theorem 3.4, we know that Hall’s
energy function is equivalent to the objective function
for normalized cut of the bigraph which in turn is the
objective function for bipartite spectral partitioning.

Spectral clustering solutions are based on finding
the Fiedler Vector (an eigenvector) of the Laplacian of
the given graph. Eigenvalues and their corresponding
eigenvectors are computed using techniques such as
Singular Value decomposition (SVD). These techniques
have typically quadratic complexity and require random
access to complete data sets. This complexity limits
their effectiveness for processing very large matrices.

3.2 Bigraph Crossing Minimization using
Barycenter Heuristic As described above, optimal
solution to Hall’s energy minimization problem is
attained when each vertex is placed at the barycenter
(mean of ordinal values) of its neighbors. In graph
drawing domain, Barycenter heuristic is a well-known
technique which attempts to draw a graph on a plane
such that edge crossings are minimized. It is an iter-
ative process. During each iteration, vertex positions
on one layer are fixed while the position of each vertex
on other layer is computed as the mean of positions
of its neighbors on the other layer. Each iteration of
barycenter requires O(|E|+ |V |log|V |) time. For graphs
with constant degree bound, the barycenter heuristic
can also be implemented in linear time per iteration.

Let vi represent the i’th node in the non-
static(dynamic) layer and set Ni represent the set of
neighbors of vi. Also let rj represent the rank of j’th
member of the set Ni. Then new rank of vi, denoted as
ri can be calculated as follows.

1. We first calculate the Weighted Mean, denoted as
µ, of the ranks of neighbor nodes using Equation
3.3.

2. These weighted means represent the new ordering
of the nodes. Since these means are not necessarily
unique, we adjust them so that each node is as-
signed a unique rank based on its weighted mean.

(3.3a) s̃ =
∑
j∈Ni

wi,j × rj

(3.3b) s =
∑
j∈Ni

wi,j

(3.3c) µi =
s̃

s

1054 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

3.3 Bicluster Identification After crossings are
minimized, we perform the bicluster identification pro-
cess. This process is performed on the reordered matrix
representation of the Bigraph. Bicluster identification
process starts from the first element of the reordered
matrix and keeps on adding new columns and rows while
calculating and updating a score representing the coher-
ence of the values in the current block of the reordered
matrix. This coherence is determined by virtue of two
kinds of distance functions namely Bregman Divergence
and Manhattan Distance.

Bregman Divergence is used to compare two rows
over same set of columns. As described earlier, we can
use different functions in Bregman Divergence Equa-
tion (Equation 2.1) to emulate Euclidean Distance, KL-
Divergence and Itakura-Saito distortion [17]. Manhat-
tan Distance is used to compare the values of adjacent
columns in the same row. Manhattan distance for two
points P1(x1, y1) and P2(x2, y2) in XY plane is given
in Equation 3.4

(3.4) D(P1, P2) =| x1 − x2 | + | y1 − y2 |

Manhattan distance is simple to compute and works
well in our case as we are using it to compare distance
among columns of the same row which are assumed to
be identically distributed.

The bicluster identification procedure is a local
search procedure. We keep pointers StartRow and
StartColumn which are initialized to first row and
column of the reordered matrix respectively. Coherence
score for adjacent rows is calculated using Bregman
Distance. Similarly the evolution pattern over adjacent
columns is determined using Manhattan Distance. Our
iterative procedure is row-major. We compare two
rows at one time to see if they have matching columns.
Starting with the StartRow and Startrow+ 1, we keep
a reference set of matching columns. Columns are
added to this set if either of following two conditions
is satisfied.

1. Bregman Distance between two rows over same set
of columns is less than the given threshold δ

2. The manhattan distance between adjacent columns
on both rows is the same.

The first condition makes sure that we always
identify the constant value biclusters constrained by the
noise. Second condition, on the other hand, guarantees
that we would be able to determine the biclusters which
exhibit coherent evolution over current set of columns.
For each subsequent row, we find out that if it has the
same coherent columns. If it has, we add it to our row

set. If any row has more coherent columns than the ones
in reference set, we set the OverlapF lag and store the
current value of row iterator i in StartRow and that of
column iterator j to StartColumn.

If both of the above mentioned conditions fail, we
call the current submatrix a bicluster and continue with
the Bicluster identification process. The next iteration
of the identification process would start from StartRow
and Startcolumn if OverlapF lag was set otherwise it
could continue with the next value of row iterator till
it reaches the last row. Moreover, when we reach the
end of columns, we add the current row to our current
Row Cluster. If we reach the end of rows, and current
column and row clusters contain more than required
minimum number of columns(Columnmin) and rows
(Rowmin) respectively, then we declare these row and
column clusters to be a bicluster and add it to the
Bicluster set S.

4 Parallel/Distributed Biclustering

Complete process of biclustering comprises of two main
tasks; first the matrix is reordered by performing cross-
ing minimization, followed by the identifying the biclus-
ters in this reordered matrix. Parallel biclustering algo-
rithm also consists of parallel crossing minimization al-
gorithm and parallel bicluster identification. As shown
in figure 2, input data matrix is horizontally partitioned
amongst all the processes. After every process acquires
its share of data, normalization of the data is performed
to construct the joint distribution of rows and columns.
In the second step, rows and columns are reordered it-
eratively until there is no further change. During this
phase only columns’ information is exchanged among
the processes, rows are reordered locally. The fact that
each process has to share only the column rank informa-
tion is very useful in privacy preserving biclustering ap-
plications (for complete details see [14] and [19]). After
reordering of local matrix, process enters in its second
phase of bicluster denitrification. With the reordered
matrix, each process performs a local bicluster search.
After identifying the biclusters locally, bicluster repre-
sentatives are shared amongst all the processes. With
this new information acquired by every process, another
phase of identifying local biclusters is completed. At
the end, updated information is shared with all the pro-
cesses and results are returned. Following sections dis-
cuss above mentioned tasks in detail.

4.1 Model for Distributed Biclustering Data is
horizontally partitioned across a set S : {s1 . . . sN} of
N Servers such that each server si has the same set A :
{a1 . . . am} of m attributes and a set Ri : {ri1 . . . rini}
of ni different objects(records) such that global object

1055 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Horizontal Partitioning

Global Exchange
of bicluster representative

Comparison with
Local Bilclusters

Column Rows

Local Bicluster Search

Until no further
change

Only once

Reordering

(Global)

Reordering

(Local)

Initialization

Crossing Minimization Bicluster Identification

Reordered
Matrix

Figure 2: System Design of Parallel Biclustering Algorithm

set R can be represented as R =
⋃
∀i∈S Ri.

4.1.1 Parallel/Distributed Barycenter Heuris-
tic Each server can build bigraph on its local data
such that objects are represented by vertices/nodes on
one layer (say Layer0) and the attributes/features are
represented by vertices on the other layer (Layer1). It
would then perform barycenter heuristic based crossing
minimization on the Bigraph. As we can recall from
previous discussion, barycenter heuristic requires itera-
tive computation of the global ranks of object nodes and
attribute nodes which are represented by two layers of
the bigraph. Rank computation for each node in one
layer of the bigraph requires the knowledge of ranks of
its neighbors on the other layer.

Since we assume horizontal partitioning, each ob-
ject node in the bigraph built over local data will have
all necessary information (i.e. Ranks of its neighbor at-
tribute nodes) to calculate its rank locally using (3.3).
This implies that no inter-server communication is re-
quired for calculating the ranks of objects at each server.

On the other hand since attribute nodes are con-
nected to object nodes which might be separated across
different servers, we will have to engage in inter-server
communication for exact computation of the ranks of
these attribute nodes. Each server i shares its local
value of µij for j’th attribute to all other servers and
then global weighted mean is calculated. This global
weighted mean µ

(j)
G for an attribute aj ∈ A is simply

the mean of all µij values over n servers.

µ
(j)
G =

∑
1≤i≤n µij

n

The global weighted mean for an attribute node

is the same over all the servers and thus results in
assignment of a unique rank to each attribute node.
This is an embarrassingly parallel procedure where rank
of each node can be effectively computed independent
of the rank of any other node in the same layer. This is
specially useful for hardware based implementations of
biclustering algorithm.

4.1.2 Parallel/Distributed Bicluster Identifica-
tion By the end of the above mentioned distributed
barycenter heuristic based crossing minimization algo-
rithm, each server will have a reordered representation
of its local data. Since ranks of object nodes are cal-
culated locally, each server does not know the global
rank of its object nodes. Global rank of object nodes is
useful only if each server knows the ranks of objects on
other servers too. This is because of the fact that bi-
cluster identification procedure works on contiguously
ranked object nodes. It will have to be implemented
in a distributed setting by having a hash table so that
each server si can lookup the table to determine the set
of servers Slookup which have object nodes adjacent to
its own object node. The server si would then engage
in distributed bicluster identification procedure in col-
laboration with those servers which belong to the set
Slookup.

It would result in tremendous increase in communi-
cation overhead. Firstly, all servers will have to engage
in all-to-all broadcast of local ranks of each object node
so as to assign unique global rank to each object node
at each server. This is also required for building the re-
quired look up table. Given the large number of object
nodes, the communication cost for this process would
be prohibitively high. Secondly, during the bicluster

1056 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

identification process each server will have to engage in
distributed bicluster identification with other servers be-
longing to the set Slookup. This would require bicluster
identification procedure to be performed in a synchro-
nized manner at each server. Given the fact that these
servers will be communicating on internet speeds and
are distributed geographically, synchronization require-
ment will be impractical for most practical applications.

The solution to above mentioned problem is to em-
ploy a simple approach whereby object ranks are com-
puted locally at each server and then bicluster identifi-
cation process is performed locally as well. Once each
server has identified its local biclusters, it broadcasts
representatives of these biclusters to all other servers.
A bicluster representative is a vector consisting of the
mean of each attribute in the bicluster. Upon receiving
the bicluster representatives from other servers, each
server determines through Euclidean distance if its lo-
cal biclusters can be combined with those from other
servers. In case it finds strong similarity between one
of its biclusters and incoming bicluster representatives.
It updates the local bicluster representative for that bi-
cluster such that the attribute means now reflect the
global attribute means for the bicluster.

5 Complexity Analysis

Lets assume that n =| V0 |= total number of rows of the
input data matrix,m =| V1 |= total number of columns
of the input matrix and Rc = average number of rows
per bicluster. Also Cc = average number of columns per
bicluster and C = total number of biclusters and k =
average number of iterations of barycenter heuristic.

5.1 Time complexity of Sequential Algorithm:
Now if O(n) = time to compute weighted means and
O(nlogn) = time to perform sorting based on means and
O(n) = time taken in adjusting node positions. Also
O(CRcCc) = time to identify biclusters. Combining
all of these components would yield sequential time
complexity which is given as Tsequential = O(k(n +
nlog(n) + n)) +O(CRcCc). The worst case complexity
for identification of a bicluster is O(nm). But the
identification process is carried out such that the sub-
matrix which is part of an already identified bicluster
won’t have to be revisited again during identification
of subsequent biclusters. In the case where a single
bicluster covers the whole matrix, we will have total
number of biclusters equal to one thus keeping the
complexity bounded by the data size itself.

Here, without loss of generality, we can assume that
O(CRcCc) = O(nm). This implies that

Tsequential = O(k(n+ nlog(n) + n)) +O(nm)

We have noted that k is a fairly small number for most
cases. This implies that in the expression for Tsequetial,
the term O(nm) tends to dominate which essentially
means that sequential biclustering process has complex-
ity which is roughly the same as the problem size.

5.2 Parallel Complexity: Lets assume that we
have horizontally partitioned the data among p proces-
sors such that each processor has now n/p rows of the
original matrix and all m columns. The computation
complexity of scheme when data is partitioned among
p processors is given by Tp = O(k(n/p+ n/plog(n/p) +
n/p)) + O(nm/p). Going by the same arguments as in
the sequential case, O(nm/p) is the rough bound on
parallel computation cost. This essentially means that
by having p processors to work on the problem, we have
reduced the overall time complexity by a factor of p
which theoretically yields a linear speedup curve. Since
the algorithm involves All-to-All communication prim-
itives firstly in the crossing minimization phase (All to
all reduce over Column positions), then during the clus-
ter combining pase all-to-all gather is performed number
of cluster times. All of these All-to-All communication
primitives incur O(p2m) in communication cost. This
indicates that the communication cost is independent
of the number of rows, it only depends upon number of
columns and number of processors. It grows linearly
with number of columns while growing quadratically
with increasing number of processors.

5.3 Impact of Memory System on Performance
As is clear from the above discussion, there are two
components of proposed parallel biclustering solution.
One is parallel crossing minimization and the other is
bicluster identification. Both of these strongly depend
on underlying memory system performance. Barycen-
ter heuristic requires in-memory sorting of rows and
columns after each iterations. We use Red-Black trees
[20] to keep the nodes sorted during each iteration with
respect to their current positions. Red Black trees
are very useful as they provide amortized latency of
O(log n) for insertion, deletion and retrieval operations.
However, we observer that the cost of keeping the tree
balanced increases exponentially as the data size in-
creases beyond a certain threshold depending on the
underlying memory system. This increase in tree bal-
ancing cost can be mitigated by increasing the cache size
so as to reduce the I/O time spent in accessing off-chip
memory and disks. This also motivates the use of par-
allelizing the code to make use of the caches distributed
across different processors in the cluster.

The second component of parallel implementation
is the bicluster identification process. This requires

1057 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

reading in the matrix in order determined by the
above mentioned barycenter heuristic. This process
is very strongly dependent on the performance of the
underlying memory system based on following two
reasons.

• During this procedure, matrix rows and columns
are scanned based on the order determined through
barycenter heuristic and not by the natural layout
in the memory. This has adverse impact on the
cache performance specially when the data size is
very large.

• As data size increases, due to limited memory
at each processor, there is high likelihood that
required data might get swapped out of memory
and onto the hard disk. Since I/O latency for
hard disk access is orders of magnitude larger
than memory access, this effect is very prominent
specially in the case of sequential algorithm.

Both of the above reasons can be mitigated intrin-
sically by the parallel implementation. As more proces-
sors become available, partitions of large data sets can
fit into their local memory more easily. Increased cache
also has a strong positive impact on the performance of
the parallel algorithm. In parallel processing domain, it
is generally believed that super-linear speedups are at-
tained when the parallel implementation is able to make
effective use of caches of all machines in the cluster. If
we consider the retail chain scenario mentioned in pre-
vious sections, this data distribution is natural. As we
show in the experiment section, these reasons explain
the super-linear speedups observed while comparing the
performance of parallel algorithm against the sequential
one.

6 Experimental Results

The proposed biclustering algorithm is implemented in
MPI/C++. Our implementations for parallel bicluster-
ing algorithm is evaluated on Mercury, a machine at
the National Center for Supercomputing Applications
(NCSA). Mercury is an 887-node IBM Linux cluster
where each node contains two Intel 1.3/1.5 GHz Ita-
nium II processors sharing 4 GB of memory. Running
a SuSE Linux operating system, the compute nodes are
inter-connected by both Myrinet and Gigabit Ethernet.
Implementation has been tested with MPICH version
1.2.6 on faster cpu machines (1.5GHz) with 6MB L3
cache. In all the experiments the execution time was
obtained through MPI Wtime() and is reported in sec-
onds. The execution time doesn’t take into account the
time spent in reading data from files but it contains the
time of writing the identified bicluster to the files.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

M
a
t
c
h

s
c
o
r
e

Noise Level

Accuracy Comparison

Sequential
Parallel

Figure 3: Accuracy Comparison between Parallel and
Sequential Algorithm

6.1 Accuracy Evaluation First set of experiments
are aimed at judging the accuracy of the proposed al-
gorithm. For this purpose, we evaluate proposed paral-
lel/distributed implementation of barycenter heuristic
based biclustering algorithm against results from the
sequential implementation [1]. For empirical evaluation
of the quality of clusters, we use the following function
which was also used in [21] and [22] .

Let M1,M2 be two sets of bi-clusters. The match
score of M1 with respect to M2 is given by

S(M1,M2) =
1

|M1 |
∑

A(I1,J1)∈M1

maxA(I2,J2)∈M2

| I1 ∩ I2 || J1 ∩ J2 |
| I1 ∪ I2 || J1 ∪ J2 |

Let Mopt denote the set of implanted bi-clusters and
M the set of the output bi-clusters of a biclustering
algorithm. S(Mopt,M) represents how well each of the
true bi-clusters is discovered by the algorithm.

Again, we follow the approach used by Liu et al. [22]
for synthetic data generation. To cater for the missing
values in real life data, we add noise by replacing some
elements in the matrix with random values. There
are three variables b, c and γ in the generation of the
bi-clusters. b and c are used to control the size of
the implanted bi-cluster. γ is the noise level of the
bi-cluster. The matrix with implanted constant bi-
clusters is generated with four steps: (1) generate a
n × m matrix A such that all elements of A are 0s,
(2) generate

√
n×
√
m bi-clusters such that all elements

of the biclusters are 1s, (3) implant the bi-clusters into
A, (4) replace γ(m × n) elements of the matrix with
random noise values (0 or 1) .

In the experiment, the noise level ranges from 0 to
0.25. The parameter settings used for the two meth-
ods are listed in Table 1. The resulting graph is shown

1058 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Method Parameter Settings

Parallel δ = 0.5, Iterations = 5,Function=KL-Divergence,Procs=4
Sequential δ = 0.5, Iterations = 5,Function=KL-Divergence,Processors=1

Table 1: Parameter Settings for Parallel and sequential Biclustering Algorithm

in Figure 3. The graph illustrates the accuracy com-
parison between sequential barycenter heuristic based
biclustering algorithm with its parallel/distributed im-
plementation (using four processors). The graph shows
that at zero noise, this scheme is almost as accurate as
the sequential scheme [1]. With the increase in noise the
accuracy degrades a little bit which is because of non-
exact nature of bicluster comparison and merge opera-
tions of the algorithm. Note however that the accuracy
of this algorithm remains considerably high even though
it is a distributed implementation which uses a simple
biclustering merge framework.

6.2 Performance Evaluation of Parallel Biclus-
tering Algorithm Second set of experiments are
aimed at analyzing the performance of parallel biclus-
tering algorithm. For this purpose algorithm was run
on synthetic data sets mentioned above. These data
sets have sizes ranging from 200, 000 rows to 20, 000, 000
rows, while keeping 64 columns throughout.

Figure 4 shows the performance improvement in
terms of execution time for crossing minimization and
bicluster identification with varying problem sizes. In
figure 4(a) execution time for more than 64 proces-
sors is not reported. It is evident from these charts
that bicluster identification execution time dominates
crossing minimization execution time. So, total execu-
tion time shows the behavior of bicluster identification
while crossing minimization becomes insignificant. Each
curve represents a different data size, it is evident from
the figure that execution time increases significantly
with the increase in number of rows. Although for single
processor, crossing minimization time increases many-
fold by increasing the number of rows from 200, 000 to
20, 000, 000, but figure 4(b) shows that bicluster iden-
tification case has shown extreme increase in execution
time for greater than 4 Million rows. The reason for this
behavior, as explained in Section 5.3 is the poor cache
utilization and possible swapping of required data to
secondary storage when the data size becomes too large
to fit in memory. The execution time improves signifi-
cantly in case of multiple processors because data par-
tition at each processor is more likely to fit in memory
and it is less likely to suffer from hard disk I/O access
latencies because of swapping. Moreover, smaller data
sets have better cache utilization as there is less cache
pollution. Since there is orders of magnitude difference
between I/O latencies from cache and those from hard

disk, the end result is exponential reduction in execu-
tions times for multiple processor cases. We are not
presenting the execution time more than 5 hours in this
paper to avoid imbalanced scaling in charts. For bigger
data sizes, execution time with only large number of pro-
cessors is reported in figure 4, because execution time is
considerably high for smaller number of processes.

Figure 5 shows the charts for speedup, which is de-
fined as S = Time(p=1)

time(p=P) , for different problem sizes from
1 to 256 processors. First graph shows speedup curves
for parallel crossing minimization, all other graphs show
overall speedup achieved for different problem sizes. For
200, 000 rows speedup decreases as the number of pro-
cessors is increased beyond 64. This is because of the
fact that inter-processor communication cost which is
O(p2) starts undermining the performance gains made
through data decomposition and resulting parallel exe-
cution of computation tasks. Similar phenomenon could
be seen for other problem sizes as well if the number of
processors are increased further. 1 Million rows case
also seems to saturate after 256 processors. Smaller the
problem size, sooner saturation will occur. Note that for
the cases of 4 Million, 10 Million and 20 Million rows,
speedup has been calculated with respect to 8, 32 and 64
processors respectively. It is clear from the graphs that
the proposed approach is very scalable and maintains
excellent speedup characteristics throughout. As dis-
cussed earlier, superlinear speedups are result of better
cache utilization with smaller data sizes and avoidance
of high latency secondary storage I/O.

7 Conclusions

Parallel/distributed implementation of biclustering al-
gorithm is highly desired in many application domains.
These domains include gene expression analysis in large
scale micro-array experiments, text mining on large web
based text repositories and collaborative filtering in E-
commerce systems. In order to meet this challenge,
a parallel/distributed algorithm for barycenter heuris-
tic based biclustering algorithm is proposed. We pro-
vide thorough analysis of the advantages of this scheme
over existing solutions. Proposed approach is evaluated
on synthetic data sets of large sizes on a cluster with
hundreds of machines. Both accuracy and performance
of the algorithm are tested and verified for these data
sets. The experiments reveal that the algorithm not
only shows super-linear and scalable speedup charac-

1059 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 32 64

T
i
m
e

(
s
e
c
)

Number of Processes

Crossing Minimization

200,000
1 Million
4 Million
10 Million
20 Million

(a)

 0

 5000

 10000

 15000

 20000

1 32 64 128 256

T
i
m
e

(
s
e
c
)

Number of Processes

Bicluster Indentification

200,000

1 Million

4 Million

10 Million

20 Million

(b)

Figure 4: Execution Time for Crossing Minimization and Bicluster Identification for Different Problem Sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

64 128 256

S
p
e
e
d
u
p

Number of Processes

Crossing Minimization

200,000
1 Million
4 Million

10 Million
20 Million

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

64 128 256

S
p
e
e
d
u
p

Number of Processes

Overall Speedup

200,000
1 Million

 0

 100

 200

 300

 400

 500

 600

 700

 800

32 64 128 256

S
p
e
e
d
u
p

Number of Processes

Overall Speedup

4 Million

 0

 20

 40

 60

 80

 100

 120

 140

32 64 128 256

S
p
e
e
d
u
p

Number of Processes

Overall Speedup

10 Million

 0

 5

 10

 15

 20

 25

64 128 256

S
p
e
e
d
u
p

Number of Processes

Overall Speedup

20 Million

Figure 5: Crossing Minimization’s and Overall Speedup for Different Problem Sizes.

1060 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

teristics but also maintains good accuracy throughout.

8 Acknowledgements

This work was supported in part by DOE SCIDAC-
2: Scientific Data Management Center for Enabling
Technologies (CET) grant DE-FC02-07ER25808, DOE
SCiDAC award number DE-FC02-01ER25485, NSF
HECURA CCF-0621443, NSF SDCI OCI-0724599, NSF
CNS-0551639 and IIS-0536994. This research was sup-
ported in part by the National Science Foundation
through TeraGrid resources provided by NCSA, grant
numbers TG-CCR060017T, TG-CCR080019T, and TG-
ASC080050N. We gratefully acknowledge Prof. Ash-
faq khokar of University of Illinois, Chicago and anony-
mous reviewers for their insightful suggestions and help-
ful comments.

References

[1] W. Ahmad and A. Khokhar, “chawk: A highly ef-
ficient biclustering algorithm using bigraph crossing
minimization,” in Second International Workshop on
Data Mining and Bioinformatics, VDMB 2007, Vi-
enna, Austria (In conjunction with VLDB2007), 2007.

[2] Y. Cheng and G. Church, “Biclustering of expression
data,” in Proceedings of Intelligent Systems for Molec-
ular Biology, 2000.

[3] S. C. Madeira and A. L. Oliveira, “Biclustering al-
gorithms for biological data analysis: A survey,”
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 1, 2004.

[4] R. Bellman, Dynamic Programming. Princeton, NJ:
Princeton University Press, 1957.

[5] I. S. Dhillon and D. S. Modha, “Concept
decompositions for large sparse text data using
clustering,” Machine Learning, vol. V42, no. 1,
pp. 143–175, January 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1007612920971

[6] A. Kittur, E. Chi, B. A. Pendleton, B. Suh, and
T. Mytkowicz, “Power of the few vs. wisdom of the
crowd: Wikipedia and the rise of the bourgeoisie,”
World Wide Web, vol. 1, no. 2, 2006.

[7] K. hoi Cheung, K. White, J. Hager, M. Gerstein, and
M. S. P. P. Miller, “Ymd: a microarray database for
large-scale gene expression analysis,” in Proc AMIA
Symp, 2002, pp. 140–144.

[8] J. Zhou and A. A. Khokhar, “Parrescue: Scalable
parallel algorithm and implementation for biclustering
over large distributed datasets.” in ICDCS. IEEE
Computer Society, 2006, p. 21.

[9] T. George and S. Merugu, “A scalable collaborative
filtering framework based on co-clustering.” in ICDM.
IEEE Computer Society, 2005, pp. 625–628.

[10] L. Wei, C. Ling, Q. Hongyu, and Q. Ling, “A par-
allel biclustering algorithm for gene expressing data.”
IEEE Computer Society Press, 2008.

[11] M. Gu, H. Zha, C. Ding, X. He, and
H. Simon, “Spectral relaxation models and
structure analysis for k-way graph clustering
and bi-clustering,” 2001. [Online]. Available:
citeseer.ist.psu.edu/article/gu01spectral.html

[12] I. S. Dhillon, “Co-clustering documents and
words using bipartite spectral graph partition-
ing,” in Knowledge Discovery and Data Mining,
2001, pp. 269–274. [Online]. Available: cite-
seer.ist.psu.edu/dhillon01coclustering.html

[13] Y. G. H. Cho, I. S. Dhillon and S. Sra, “Minimum
sum-squared residue co-clustering of gene expression
data,” in Proceedings of the fourth SIAM International
Conference on Data Mining, 2004, pp. 114–125.

[14] W. Ahmad and A. Khokhar, “An architecture for pri-
vacy preserving collaborative filtering on web portals,”
in The Third International Symposium on Information
Assurance and Security (IAS), 2007.

[15] S. M. I. S. Dhillon and D. S. Modha., “Information-
theoretic co-clustering,” in Proceedings of The Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Miing (KDD), 2003, pp. 89–
98.

[16] I. S. D. A. Banerjee, S. Merugu and J. Ghosh, “Clus-
tering with bregman divergences,” Journal of Machine
Learning Research, vol. 6, pp. 1705–1749, 2005.

[17] J. Lafferty, S. Pietra, and V. Pietra, “Statistical learn-
ing algorithms based on bregman distances,” in Pro-
ceedings of the Canadian Workshop on Information
Theory, 1997., 1997.

[18] M. R. Garey and D. S. Johnson, Computers and
Intractability; A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[19] W. Ahmad and A. A. Khokhar, “Phoenix: Privacy pre-
serving biclustering on horizontally partitioned data,”
in Privacy, Security, and Trust in KDD, First ACM
SIGKDD International Workshop, PinKDD 2007, San
Jose, CA, USA, August 12, 2007, Revised Selected Pa-
pers, ser. Lecture Notes in Computer Science, vol. 4890.
Springer, 2008, pp. 14–32.

[20] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.
Leiserson, Introduction to Algorithms. McGraw-Hill
Higher Education, 2001.

[21] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille,
P. Buhlmann, W. Gruissem, L. Hennig, L. Thiele, and
E. Zitzler, “A systematic comparison and evaluation of
biclustering methods for gene expression data,” Bioin-
formatics, 2006.

[22] L. W. X. Liu, “Computing the maximum similarity
bi-clusters of gene expression data,” Bioinformatics,
vol. 23, no. 1, pp. 50–56, 2007.

1061 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

