
pNFS, POSIX, and MPI-IO: A Tale of Three Semantics
Dean Hildebrand

IBM Almaden
dhildeb@us.ibm.com

Arifa Nisar
Northwestern University

a-nisar@u.northwestern.edu

Roger Haskin
IBM Almaden

roger@almaden.ibm.com

ABSTRACT
MPI-IO is emerging as the standard mechanism for file I/O within
HPC applications. While pNFS demonstrates high-performance
I/O for bulk data transfers, its performance and scalability with
MPI-IO is unproven. To attain success, the consistency semantics
and interfaces of pNFS, POSIX, and MPI-IO must all be recon-
ciled and efficiently translated. This paper investigates and dis-
cusses the challenges of using pNFS to support the consistency
semantics of HPC applications.

1. INTRODUCTION
Advanced research collaborations push the bounds of mod-
ern technology, but continue to be constrained by rigid
computing and storage infrastructures. Many large compute
clusters are tightly coupled with a single file system, requir-
ing large data sets to be moved multiple times across a
computational grid [1]. In addition, while parallel file sys-
tems provide high I/O throughput to large data stores, they
are highly specialized, have limited OS and hardware sup-
port, lack seamless integration and modern security fea-
tures, and suffer from slow remote access [2-4].

Many HPC applications use the MPI-IO interface to sepa-
rate themselves from the strict confines of a particular com-
pute cluster [5]. Beyond an abstraction layer, MPI-IO fur-
ther allows nodes to coordinate and optimize access to the
file system, and is the foundation of modern data access
libraries such as HDF5 and Parallel-netCDF [6, 7].
ROMIO, a popular MPI-IO implementation developed at
Argonne National Laboratories, improves I/O performance
through a variety of techniques including data sieving and
collective I/O [8].

Unfortunately, MPI-IO does not completely shield applica-
tions, as some file systems continue to use specialized tun-
ing parameters. In addition, MPI-IO offers this abstraction
only to applications, leaving other producers and consumers
of data, e.g., archival and backup systems, local and remote
desktops, visualization clusters, to continue suffering from
portability headaches.

Distributed file systems such as NFS and CIFS provide
heterogeneous data access and are widely available, but
their “single server” design, which binds one network end-
point to a given collection of files, limits opportunities to
scale with network, CPU, memory, and disk I/O resources.
NFSv3 is a poor match for HPC applications due to its
poorly defined locking protocol and caching semantics. An
existing ROMIO module for NFSv3 exists, but the unpre-
dictable NFSv3 caching behavior forces it to lock/unlock
and open/close files excessively, severely reducing perfor-
mance. NFSv4 [9] improves functionality by including
well-defined security and locking frameworks as well as
migration and replication features, but retains the single
server bottleneck.

pNFS, an integral part of NFSv4.1 [10], promises to bridge
the gap between the performance requirements of large,
parallel applications and the interoperability and security
requirements of modern Grid workflows. pNFS provides
high-performance data access to large-scale storage systems
in both LAN and WAN environments [11, 12]. In addition,
pNFS decouples the tight bond between storage systems
and their clients, enabling pNFS clients to directly access
parallel file systems. Direct access reduces latency, allows
full use of the available network bandwidth, and reduces the
management overhead and storage space required to main-
tain copies of large data sets in multiple data centers.

An original promise of pNFS was, and still is, to replace
native parallel file system clients within a cluster. Unfortu-
nately, while pNFS can achieve high-performance for bulk
data transfers, its scalability and close-to-open caching se-
mantics are unproven with HPC applications using MPI-IO.

This paper argues that two major developments indicate
that it is now time to take a second look at NFS with MPI-
IO. First, the HPC community is arguing that applications
do not require strict POSIX I/O semantics as supported by
most parallel file systems, but instead require a relaxed ver-
sion [13]. Second, pNFS introduces a well-defined locking
protocol, stricter caching semantics, caching and lock per-
formance improvements, and parallel data access. In com-
bination, these events suggest that HPC applications and
NFS have a prosperous future together.

In the remainder of this paper, we give an overview of
pNFS and describe our implementation with GPFS. We
then argue for the benefits of a commodity high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Supercomputing PDSW'09, Nov. 15, 2009. Portland, OR, USA.
Copyright © 2009 ACM 978-1-60558-883-4/09/11... $10.00

32

performance file system client such as pNFS and discuss
the challenges and benefits of using pNFS to support paral-
lel MPI-IO applications.

2. COMMODITY FILE ACCESS
NFS owes its success to an open protocol, platform ubiqui-
ty, and transparent access to file systems—independent of
the underlying storage technology. Beyond performance
and scalability, the benefits offered by pNFS to the HPC
community are numerous. One benefit is that clusters can
decouple themselves from any particular parallel file sys-
tem. Figure 1 demonstrates how applications can access the
parallel file system that contains the data, regardless of
whether it is within a LAN or across a WAN, thus reducing
the cost of development, administration, and support.

Another benefit is that system administrators can select a
storage solution with confidence that users are able to
access their data. In addition, storage vendors are free to
focus on advanced data management features such as fault
tolerance, archiving, manageability, and scalability without
having to custom tailor their products across a broad spec-
trum of client platforms.

3. BACKGROUND: pNFS WITH GPFS
Figure 2 displays the pNFS architecture with GPFS. The
nodes in the GPFS cluster chosen for pNFS access are di-
vided into (possibly overlapping) groups of state and data
servers. pNFS clients are distributed across all state servers
in a round-robin fashion. Clients send metadata requests to
their associated state server while I/O is distributed across
all of the data servers. Each state server functions as fully
functional NFSv4.1 metadata server, with GPFS maintain-
ing correctness using an internal management protocol.

To perform direct and parallel I/O, a pNFS client first re-
quests layout information from a state server. A layout con-
tains the information required to access any byte range of a

file. The pNFS client uses the layout information to trans-
late data access requests into READ and WRITE operations
to the correct data servers. For writes, once the I/O is com-
plete, the client sends an NFSv4 COMMIT operation to its
state server. This single COMMIT operation has GPFS
acquire exclusive access to the file, flushing data to stable
storage on every data server. The GPFS management pro-
tocol maintains the freshness of NFSv4 state information
among servers.

Since each GPFS server exports the entire file system, the
layout does not indicate the actual location of the data.
Instead, the layout provides a mechanism to balance client
load among the data servers. This allows GPFS a great deal
of flexibility in how it generates the layout information.
For example, GPFS can rebalance data across the disks
without needing to recall and generate new layout informa-
tion for pNFS clients. In addition, layouts can be used to
ensure all I/O for a byte-range of a file are sent to a single
GPFS server, reducing lock contention and the number of
read-modify-write sequences.

4. IT’S ALL SEMANTICS
The majority of parallel file systems support POSIX, the
IEEE Portable Operating System Interface for Computing
Environments. POSIX defines a standard interface and a
strict set of semantics for applications to access a file sys-
tem. Implementing POSIX semantics in multi-node file
systems is extremely difficult and may incur severe perfor-
mance penalties. For example, the POSIX requirement that
writes to a file must be immediately visible to all other
processes can cause extensive inter-node communication
and create locking overhead if not carefully implemented.

Many file access protocols, including NFS, chose not to
implement POSIX semantics to avoid severe performance
penalties. Instead, NFS implements close-to-open seman-
tics, which states that all file data and metadata changes
must be on the server when a client closes a file. Once a
client closes a file, changes are visible to other clients as
soon as they open the file. NFSv4 now clearly defines

Figure 1. Using pNFS in a compute cluster. Applications
can use a single pNFS client to mount and access their pre-
ferred parallel file system. The mounted file systems can be
within the same site or across the WAN. Each compute node
runs a stock Linux kernel.

Figure 2. pNFS-GPFS Architecture. GPFS servers are
divided into overlapping groups of state servers and data
servers. pNFS clients access state servers for metadata op-
erations and perform parallel I/O to the data servers.

33

these semantics within the protocol, but this laidback nature
of close-to-open semantics prevents many parallel applica-
tions from using NFS.

MPI-IO recognizes that parallel applications are coordi-
nated and should be granted greater control over their inte-
raction with the file system. MPI-IO relaxes POSIX seman-
tics and defines an interface that allows applications to
manage cache coherency themselves. The
MPI_FILE_SYNC command gives applications a guarantee
about the freshness of data by controlling when data and
metadata are flushed and revalidated.1

MPI-IO semantics are therefore looser than POSIX seman-
tics, but are similar to NFSv4 semantics in how it flushes
and revalidates data at specific points in time. Unfortunate-
ly, since POSIX is the only user-accessible interface to NFS
and many parallel file systems, any potential performance
gains can be lost [13]. Our project intends to demonstrate
that pNFS can maintain its raw performance while leverag-
ing its looser semantics to meet the needs of HPC applica-
tions with MPI-IO.

5. ACHIEVING MPI-IO SEMANTICS
This section discusses MPI-IO semantics, the performance
obstacles of using NFS for their implementation, and sever-
al techniques to potentially regain performance.

5.1. The SYNC/BARRIER/SYNC Construct
This section describes MPI consistency semantics. To en-
sure data written on one node is visible to other nodes, all
nodes perform a SYNC/BARRIER/SYNC [14] between write
and read requests:

1. SYNC: Place written data on filing servers.

2. BARRIER: Clients wait for other clients to flush dirty
data to the servers, ensuring that no client issues read re-
quests until all clients have the same view of file contents.

3. SYNC: Perform file revalidation by ensuring written data
is visible to all nodes.

In short, SYNC/BARRIER/SYNC is a way to enforce an order-
ing and separation of I/O operations in time. It is the pri-
mary method used by MPI applications to order I/O opera-
tions between nodes and must be correctly implemented by
any file system that supports MPI-IO semantics.

5.2. NFS ADIO Driver Performance Problems
ROMIO [8], a popular MPI-IO implementation from Ar-
gonne National Laboratory, interfaces with an underlying
file system through an Abstract Device I/O (ADIO) layer

1 For completeness, MPI-IO also defines atomic operations, which provide
the semantics similar to POSIX.

[15]. The ADIO layer allows any file system to implement
and optimize MPI-IO requests through standard or private
interfaces and/or customized hints. As a result, users can
run applications portably and efficiently on any supported
file system.

For POSIX-compliant file systems, a “Unix File System”
(UFS) ADIO driver exists. With POSIX semantics being
stricter that MPI-IO semantics, the UFS driver performs
little, if any, extra work to implement MPI-IO semantics.

The NFSv3 ADIO driver is a completely different matter,
requiring an enormous amount of effort for its development
[16]. The driver is extremely limited in its ability to im-
plement MPI-IO semantics as portability requirements de-
mand that all interaction with NFSv3 occur through the
POSIX interface. Therefore, the NFS ROMIO driver relies
heavily on NFS locking and NFS close-to-open semantics
to achieve correctness. The NFS client revalidates file data
on a LOCK or OPEN request, and flushes all dirty data to
disk on an UNLOCK or CLOSE request.

Applications using the NFSv3 driver continue to face many
correctness and performance challenges:

 Flaky and inconsistent NFSv3 implementations on dif-
ferent operating systems. For example, clients reading
a single byte may cache an entire page, forcing the
driver to acquire and release locks after every write to
flush cache.

 Well known protocol and implementation problems
with the NFSv3 lockd daemon.

 NFSv3 client attribute caching must be disabled in or-
der for a MPI client to view up-to-date file information.
This greatly increases the chattiness of NFSv3 and
henceforth the load on the NFSv3 server, severely re-
ducing performance.

5.2.1. Example Application: POPIO Benchmark
The POPIO benchmark [17] is one of NCAR’s most scala-
ble I/O codes and simulates the I/O requirements of a high
resolution ocean model. POPIO uses MPI collective I/O
operations to write and then read four files using a strided
access pattern. The POPIO benchmark offloads all check-
point data and then ingests it.

Figure 3 demonstrates the extra locking overhead in the
current NFS ADIO driver by comparing it with the UFS
ADIO driver, which does not perform fcntl locking. We
can drop byte-range locking since checkpointing and ingest
require revalidation only when a file is opened and closed.

With both NFSv4 accessing Ext3 and pNFS accessing
GPFS, as the number of client processes increases, the cur-
rent NFS ADIO driver sustains lower performance than the
UFS ADIO driver due to its heavy use of fcntl locks to

34

protect and revalidate the data cache. While maintaining
correctness, for pNFS, read performance improves by 15%
and write performance improves by up to 10%. The POPIO
benchmark is executed with up to 32 processes running on
6 client machines. The NFSv4 server exporting Ext3 is on
a single machine while pNFS accesses GPFS via two data
servers. The POPIO benchmark is executed with up to 32
processes running on 6 client machines. The NFSv4 server
exporting Ext3 is on a single machine while pNFS accesses
GPFS via two data servers. The disk controller is the over-
all performance bottleneck in all experiments.

5.3. Building a Better Driver
The performance of pNFS combined with the integrated
NFSv4 lock protocol opens up the possibility of building a
correct and high-performance MPI-IO driver. Our goal is
to build a new pNFS ROMIO driver that provides outstand-
ing performance for the most common HPC workloads, i.e.,
using checkpoints to read and write large amounts of data.

Unfortunately, the POSIX interface continues to pose chal-
lenges. While the NFSv4 protocol has the tools to satisfy
MPI-IO semantics, there is currently no revalidation inter-
face in POSIX. As a result, the pNFS driver must rely on
any number of other possible revalidation mechanisms to
implement the SYNC/BARRIER/SYNC construct:

Direct I/O: The NFS client can avoid revalidation issues by
simply avoiding data caching all together. This may be fine
for some workloads, but the lack of readahead or writeback
caching could severely hinder performance.

Locking: Now that NFSv4 has a well-defined locking pro-
tocol with clear semantics, a pNFS driver can use fcntl
locks in a similar manner as the UFS driver. One side affect
is that NFSv4.1 fault tolerance semantics mandate that all
data must be written to disk on release of a write lock. This
may create a performance penalty when the amount of writ-
ten data is less than the size of the server cache.

Forced cache revalidation and invalidation: No portable
revalidation mechanism exists, but a non-portable IOCTL
function could force the NFS client to revalidate its data

cache. In the longer term, if this mechanism proves useful,
a standard interface can hopefully be adopted [13].

Force Data Eviction: Another non-portable technique is to
evict cached data from memory. For example, Linux sup-
ports allows applications to clear all non-dirty pages from
the page cache with ‘sysctl -w vm.drop_caches=1’.
This achieves effectively the same behavior as using Direct
I/O, but allows limited use of the read and writeback cache.

6. RELATED WORK
Previous work with pNFS focuses on micro-benchmarks
and parallel applications that did not rely on the
SYNC/BARRIER/SYNC construct [11, 12, 18].

Numerous high-performance file systems support MPI-IO
[2, 19-21]. Some ADIO drivers continue to optimize I/O
performance, e.g., Lustre and PanFS per-file striping para-
meters.

The HPC community has started an effort to extend the
POSIX I/O API to improve clustering, parallelism, and high
concurrency applications [13]. This effort may end up be-
ing critically important in providing platform-independent
ADIO drivers.

GPFS implemented several optimizations for MPI-IO, in-
cluding data shipping, improved sparse data access, and
double buffering [20]. These optimizations are built direct-
ly into GPFS instead of ROMIO. While this can simplify
the application interface, allowing additional enhancements
at the ROMIO layer such as striping parameters would also
be beneficial.

Scalable NAS solutions are emerging to provide scalable
and heterogeneous access to large data stores [22-24].
These systems support NFSv3 and CIFS clients through
multiple server endpoints. While these architectures im-
prove scalability and can provide automatic failover, load
balancing among the servers is uncoordinated and relies on
out-of-band mechanisms such as DNS. In addition, forcing
each client to perform all I/O through a single server creates
hot spots, which limits available client bandwidth.

0

10

20

30

40

50

60

70

80

90

100

2 4 16 32

Number of processes

I/
O

 B
a

n
d

w
id

th
 (

M
B

/s
e
c

)

Read UFS Driver
Read NFS Driver
Write UFS Driver
Write NFS Driver

0

10

20

30

40

50

60

70

80

90

100

2 4 16 32

Number of processes

A
g

g
re

g
a

te
 I/

O
 B

an
d

w
id

th

(M
B

/s
ec

)

Read UFS Driver

Read NFS driver

0

10

20

30

40

50

60

70

80

90

100

2 4 16 32
Number of processes

A
g

g
re

g
at

e
I/

O
 B

an
d

w
id

th

(M
B

/s
ec

)

Write UFS Driver
Write NFS Driver

(a) NFSv4/Ext3 Read and Write (b) pNFS/GPFS Read (c) pNFS/GPFS Write
Figure 3. POP-IO benchmark read and write performance with UFS and NFS ADIO drivers. With both NFSv4 accessing
Ext3 and pNFS accessing GPFS, the current NFS ADIO driver has lower performance than the UFS ADIO driver due to its heavy
use of fcntl locks to protect and revalidate the data cache.

35

7. CONCLUDING REMARKS
HPC pushes the limits of modern computing, but continues
to use rigid storage infrastructures. The emergence of
pNFS promises to boost the capabilities of commodity file
access. pNFS offers the promise of using a commodity
client to access thousands of servers and petabytes of data.
Ongoing work to align pNFS, MPI-IO, and POSIX consis-
tency semantics directly addresses the needs of the high-
performance community by seeking to overcome limitations
that fetter portability, correctness, and performance.

8. REFERENCES
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, "The Globus
Striped GridFTP Framework and Server," in Proceed-
ings of Supercomputing '05, Seattle, WA, 2005.

[2] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Muel-
ler, J. Small, J. Zelenka, and B. Zhou, "Scalable Per-
formance of the Panasas Parallel File System," in Pro-
ceedings of the 6th USENIX Conference on File and
Storage Technologies, San Jose, CA, 2008.

[3] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File
System for Large Computing Clusters," in Proceedings
of the USENIX Conference on File and Storage Tech-
nologies, San Francisco, CA, 2002.

[4] Cluster File Systems Inc., "Lustre: A Scalable, High-
Performance File System," www.lustre.org, 2002.

[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir, MPI: The Com-
plete Reference, volume 2--The MPI-2 Extensions.
Cambridge, MA: MIT Press, 1998.

[6] NCSA, "HDF5 ", hdf.ncsa.uiuc.edu/HDF5.
[7] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W.

Gropp, R. Latham, A. Siegel, B. Gallagher, and M.
Zingale, "Parallel netCDF: A Scientific High-
Performance I/O Interface," in Proceedings of Super-
computing '03, Phoenix, AZ, 2003.

[8] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and
Collective I/O in ROMIO," in Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999.

[9] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck, "NFS Version 4
Protocol Specification," RFC 3530, 2003.

[10] S. Shepler, M. Eisler, and D. Noveck, "NFSv4 Minor
Version 1," Internet Draft, 2008.

[11] D. Hildebrand, P. Andrews, M. Eshel, R. Haskin, P.
Kovatch, and J. White, "Deploying pNFS across the
WAN: First Steps in HPC Grid Computing," in Pro-
ceedings of the 9th LCI International Conference on
High-Performance Clustered Computing, Urbana, IL,
2008.

[12] D. Hildebrand and P. Honeyman, "Exporting Storage
Systems in a Scalable Manner with pNFS," in Proceed-
ings of the 22nd IEEE/13th NASA Goddard Confe-
rence on Mass Storage Systems and Technologies,
Monterey, CA, 2005.

[13] G. Grider, L. Ward, R. Ross, and G. Gibson, "A Busi-
ness Case for Extensions to the POSIX I/O API for
High End, Clustered, and Highly Concurrent Compu-
ting," www.opengroup.org/platform/hecewg, 2006.

[14] "MPI-Forum," www.mpi-forum.org/docs/ mpi-20-
html/node215.htm.

[15] R. Thakur, W. Gropp, and E. Lusk, "An Abstract-
Device Interface for Implementing Portable Parallel-
I/O Interfaces," in Proceedings of the 6th Symposium
on the Frontiers of Massively Parallel Computation,
1996.

[16] R. Thakur, E. Lusk, and W. Gropp, "Users Guide for
ROMIO: A High-Performance, Portable MPI-IO Im-
plementation," Technical Memorandum ANL/MCS-
TM-234, Mathematics and Computer Science Division,
Argonne National Laboratory, Revised May 2004.

[17] M. Oberg, H.M. Tufo, and M. Woitaszek, "Exploration
of Parallel Storage Architectures for a Blue Gene/L on
the TeraGrid," in Proceedings of the 9th LCI Interna-
tional Conference on High-Performance Clustered
Computing, Urbana, IL, 2008.

[18] D. Hildebrand, L. Ward, and P. Honeyman, "Large
Files, Small Writes, and pNFS," in Proceedings of the
20th ACM International Conference on Supercomput-
ing, Cairns, Australia, 2006.

[19] Sun Microsystems Inc., "Lustre File System," White-
paper, 2007.

[20] J.P Prost, R. Treumann, R. Hedges, B. Jia, and A.E.
Koniges, "MPI-IO/GPFS, an Optimized Implementa-
tion of MPI-IO on top of GPFS," in Proceedings of
Supercomputing '01, Denver, CO, 2001.

[21] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur,
"PVFS: A Parallel File System for Linux Clusters," in
Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, 2000.

[22] I. Chavis, D. Coutts, J. Huie, S. Liu, S. Qualters, B.
Demkowicz, and D.L Turkenkopf, "A Guide to the
IBM Clustered Network File System," IBM Redbooks,
2008.

[23] IBM Corp., "IBM Storage Optimization and Integra-
tion Services-scale out file services," datasheet, 2007.

[24] M. Eisler, P. Corbett, M. Kazar, D. Nydick, and C.
Wagner, "Data ONTAP GX: A Scalable Storage Clus-
ter," in Proceedings of the 5th USENIX conference on
File and Storage Technologies, San Jose, CA, 2007.

36

