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ABSTRACT
MPI-IO is emerging as the standard mechanism for file I/O within 
HPC applications.  While pNFS demonstrates high-performance 
I/O for bulk data transfers, its performance and scalability with
MPI-IO is unproven.  To attain success, the consistency semantics 
and interfaces of pNFS, POSIX, and MPI-IO must all be recon-
ciled and efficiently translated.  This paper investigates and dis-
cusses the challenges of using pNFS to support the consistency 
semantics of HPC applications.

1. INTRODUCTION
Advanced research collaborations push the bounds of mod-
ern technology, but continue to be constrained by rigid
computing and storage infrastructures. Many large compute 
clusters are tightly coupled with a single file system, requir-
ing large data sets to be moved multiple times across a 
computational grid [1].  In addition, while parallel file sys-
tems provide high I/O throughput to large data stores, they
are highly specialized, have limited OS and hardware sup-
port, lack seamless integration and modern security fea-
tures, and suffer from slow remote access [2-4].

Many HPC applications use the MPI-IO interface to sepa-
rate themselves from the strict confines of a particular com-
pute cluster [5]. Beyond an abstraction layer, MPI-IO fur-
ther allows nodes to coordinate and optimize access to the 
file system, and is the foundation of modern data access 
libraries such as HDF5 and Parallel-netCDF [6, 7].
ROMIO, a popular MPI-IO implementation developed at 
Argonne National Laboratories, improves I/O performance 
through a variety of techniques including data sieving and 
collective I/O  [8].

Unfortunately, MPI-IO does not completely shield applica-
tions, as some file systems continue to use specialized tun-
ing parameters.  In addition, MPI-IO offers this abstraction 
only to applications, leaving other producers and consumers 
of data, e.g., archival and backup systems, local and remote 
desktops, visualization clusters, to continue suffering from 
portability headaches.

Distributed file systems such as NFS and CIFS provide
heterogeneous data access and are widely available, but
their “single server” design, which binds one network end-
point to a given collection of files, limits opportunities to 
scale with network, CPU, memory, and disk I/O resources.  
NFSv3 is a poor match for HPC applications due to its 
poorly defined locking protocol and caching semantics.  An 
existing ROMIO module for NFSv3 exists, but the unpre-
dictable NFSv3 caching behavior forces it to lock/unlock 
and open/close files excessively, severely reducing perfor-
mance.  NFSv4 [9] improves functionality by including
well-defined security and locking frameworks as well as
migration and replication features, but retains the single 
server bottleneck. 

pNFS, an integral part of NFSv4.1 [10], promises to bridge 
the gap between the performance requirements of large, 
parallel applications and the interoperability and security 
requirements of modern Grid workflows.  pNFS provides
high-performance data access to large-scale storage systems 
in both LAN and WAN environments [11, 12].  In addition, 
pNFS decouples the tight bond between storage systems 
and their clients, enabling pNFS clients to directly access 
parallel file systems.  Direct access reduces latency, allows 
full use of the available network bandwidth, and reduces the 
management overhead and storage space required to main-
tain copies of large data sets in multiple data centers.

An original promise of pNFS was, and still is, to replace 
native parallel file system clients within a cluster.  Unfortu-
nately, while pNFS can achieve high-performance for bulk 
data transfers, its scalability and close-to-open caching se-
mantics are unproven with HPC applications using MPI-IO.  

This paper argues that two major developments indicate 
that it is now time to take a second look at NFS with MPI-
IO.  First, the HPC community is arguing that applications
do not require strict POSIX I/O semantics as supported by 
most parallel file systems, but instead require a relaxed ver-
sion [13].  Second, pNFS introduces a well-defined locking 
protocol, stricter caching semantics, caching and lock per-
formance improvements, and parallel data access.  In com-
bination, these events suggest that HPC applications and 
NFS have a prosperous future together.

In the remainder of this paper, we give an overview of 
pNFS and describe our implementation with GPFS.  We 
then argue for the benefits of a commodity high-
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performance file system client such as pNFS and discuss 
the challenges and benefits of using pNFS to support paral-
lel MPI-IO applications.

2. COMMODITY FILE ACCESS
NFS owes its success to an open protocol, platform ubiqui-
ty, and transparent access to file systems—independent of 
the underlying storage technology.  Beyond performance 
and scalability, the benefits offered by pNFS to the HPC 
community are numerous.  One benefit is that clusters can 
decouple themselves from any particular parallel file sys-
tem.  Figure 1 demonstrates how applications can access the 
parallel file system that contains the data, regardless of 
whether it is within a LAN or across a WAN, thus reducing 
the cost of development, administration, and support.

Another benefit is that system administrators can select a 
storage solution with confidence that users are able to 
access their data.  In addition, storage vendors are free to 
focus on advanced data management features such as fault 
tolerance, archiving, manageability, and scalability without 
having to custom tailor their products across a broad spec-
trum of client platforms.

3. BACKGROUND: pNFS WITH GPFS
Figure 2 displays the pNFS architecture with GPFS.  The 
nodes in the GPFS cluster chosen for pNFS access are di-
vided into (possibly overlapping) groups of state and data 
servers.  pNFS clients are distributed across all state servers 
in a round-robin fashion. Clients send metadata requests to 
their associated state server while I/O is distributed across 
all of the data servers.  Each state server functions as fully 
functional NFSv4.1 metadata server, with GPFS maintain-
ing correctness using an internal management protocol.

To perform direct and parallel I/O, a pNFS client first re-
quests layout information from a state server.  A layout con-
tains the information required to access any byte range of a 

file.  The pNFS client uses the layout information to trans-
late data access requests into READ and WRITE operations 
to the correct data servers.  For writes, once the I/O is com-
plete, the client sends an NFSv4 COMMIT operation to its
state server.  This single COMMIT operation has GPFS 
acquire exclusive access to the file, flushing data to stable 
storage on every data server.  The GPFS management pro-
tocol maintains the freshness of NFSv4 state information 
among servers.

Since each GPFS server exports the entire file system, the 
layout does not indicate the actual location of the data.  
Instead, the layout provides a mechanism to balance client 
load among the data servers.  This allows GPFS a great deal 
of flexibility in how it generates the layout information.  
For example, GPFS can rebalance data across the disks 
without needing to recall and generate new layout informa-
tion for pNFS clients.  In addition, layouts can be used to 
ensure all I/O for a byte-range of a file are sent to a single 
GPFS server, reducing lock contention and the number of 
read-modify-write sequences.

4. IT’S ALL SEMANTICS
The majority of parallel file systems support POSIX, the 
IEEE Portable Operating System Interface for Computing 
Environments.  POSIX defines a standard interface and a 
strict set of semantics for applications to access a file sys-
tem.  Implementing POSIX semantics in multi-node file 
systems is extremely difficult and may incur severe perfor-
mance penalties.  For example, the POSIX requirement that 
writes to a file must be immediately visible to all other 
processes can cause extensive inter-node communication 
and create locking overhead if not carefully implemented.

Many file access protocols, including NFS, chose not to 
implement POSIX semantics to avoid severe performance 
penalties.  Instead, NFS implements close-to-open seman-
tics, which states that all file data and metadata changes 
must be on the server when a client closes a file.  Once a 
client closes a file, changes are visible to other clients as
soon as they open the file.  NFSv4 now clearly defines 

Figure 1. Using pNFS in a compute cluster.  Applications 
can use a single pNFS client to mount and access their pre-
ferred parallel file system.  The mounted file systems can be 
within the same site or across the WAN.  Each compute node 
runs a stock Linux kernel.

Figure 2. pNFS-GPFS Architecture.  GPFS servers are 
divided into overlapping groups of state servers and data 
servers.  pNFS clients access state servers for metadata op-
erations and perform parallel I/O to the data servers.
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these semantics within the protocol, but this laidback nature 
of close-to-open semantics prevents many parallel applica-
tions from using NFS.

MPI-IO recognizes that parallel applications are coordi-
nated and should be granted greater control over their inte-
raction with the file system.  MPI-IO relaxes POSIX seman-
tics and defines an interface that allows applications to 
manage cache coherency themselves.  The 
MPI_FILE_SYNC command gives applications a guarantee
about the freshness of data by controlling when data and 
metadata are flushed and revalidated.1

MPI-IO semantics are therefore looser than POSIX seman-
tics, but are similar to NFSv4 semantics in how it flushes
and revalidates data at specific points in time.  Unfortunate-
ly, since POSIX is the only user-accessible interface to NFS 
and many parallel file systems, any potential performance 
gains can be lost [13].  Our project intends to demonstrate 
that pNFS can maintain its raw performance while leverag-
ing its looser semantics to meet the needs of HPC applica-
tions with MPI-IO.

5. ACHIEVING MPI-IO SEMANTICS
This section discusses MPI-IO semantics, the performance 
obstacles of using NFS for their implementation, and sever-
al techniques to potentially regain performance.

5.1. The SYNC/BARRIER/SYNC Construct
This section describes MPI consistency semantics.  To en-
sure data written on one node is visible to other nodes, all 
nodes perform a SYNC/BARRIER/SYNC [14] between write 
and read requests:

1. SYNC: Place written data on filing servers.

2. BARRIER: Clients wait for other clients to flush dirty
data to the servers, ensuring that no client issues read re-
quests until all clients have the same view of file contents.

3. SYNC: Perform file revalidation by ensuring written data 
is visible to all nodes.

In short, SYNC/BARRIER/SYNC is a way to enforce an order-
ing and separation of I/O operations in time. It is the pri-
mary method used by MPI applications to order I/O opera-
tions between nodes and must be correctly implemented by 
any file system that supports MPI-IO semantics.

5.2. NFS ADIO Driver Performance Problems
ROMIO [8], a popular MPI-IO implementation from Ar-
gonne National Laboratory, interfaces with an underlying 
file system through an Abstract Device I/O (ADIO) layer 

                                                          
1 For completeness, MPI-IO also defines atomic operations, which provide 
the semantics similar to POSIX.

[15].  The ADIO layer allows any file system to implement 
and optimize MPI-IO requests through standard or private 
interfaces and/or customized hints.  As a result, users can 
run applications portably and efficiently on any supported 
file system.

For POSIX-compliant file systems, a “Unix File System” 
(UFS) ADIO driver exists.  With POSIX semantics being 
stricter that MPI-IO semantics, the UFS driver performs
little, if any, extra work to implement MPI-IO semantics.

The NFSv3 ADIO driver is a completely different matter, 
requiring an enormous amount of effort for its development
[16].  The driver is extremely limited in its ability to im-
plement MPI-IO semantics as portability requirements de-
mand that all interaction with NFSv3 occur through the 
POSIX interface.  Therefore, the NFS ROMIO driver relies 
heavily on NFS locking and NFS close-to-open semantics 
to achieve correctness.  The NFS client revalidates file data 
on a LOCK or OPEN request, and flushes all dirty data to 
disk on an UNLOCK or CLOSE request.

Applications using the NFSv3 driver continue to face many 
correctness and performance challenges:

 Flaky and inconsistent NFSv3 implementations on dif-
ferent operating systems.  For example, clients reading 
a single byte may cache an entire page, forcing the 
driver to acquire and release locks after every write to 
flush cache.

 Well known protocol and implementation problems 
with the NFSv3 lockd daemon.

 NFSv3 client attribute caching must be disabled in or-
der for a MPI client to view up-to-date file information.  
This greatly increases the chattiness of NFSv3 and 
henceforth the load on the NFSv3 server, severely re-
ducing performance. 

5.2.1. Example Application: POPIO Benchmark
The POPIO benchmark [17] is one of NCAR’s most scala-
ble I/O codes and simulates the I/O requirements of a high 
resolution ocean model.  POPIO uses MPI collective I/O 
operations to write and then read four files using a strided 
access pattern.  The POPIO benchmark offloads all check-
point data and then ingests it.

Figure 3 demonstrates the extra locking overhead in the 
current NFS ADIO driver by comparing it with the UFS 
ADIO driver, which does not perform fcntl locking.  We 
can drop byte-range locking since checkpointing and ingest
require revalidation only when a file is opened and closed.

With both NFSv4 accessing Ext3 and pNFS accessing 
GPFS, as the number of client processes increases, the cur-
rent NFS ADIO driver sustains lower performance than the 
UFS ADIO driver due to its heavy use of fcntl locks to 
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protect and revalidate the data cache.  While maintaining 
correctness, for pNFS, read performance improves by 15% 
and write performance improves by up to 10%.  The POPIO 
benchmark is executed with up to 32 processes running on 
6 client machines.  The NFSv4 server exporting Ext3 is on 
a single machine while pNFS accesses GPFS via two data 
servers.  The POPIO benchmark is executed with up to 32 
processes running on 6 client machines.  The NFSv4 server 
exporting Ext3 is on a single machine while pNFS accesses 
GPFS via two data servers.  The disk controller is the over-
all performance bottleneck in all experiments.

5.3. Building a Better Driver
The performance of pNFS combined with the integrated 
NFSv4 lock protocol opens up the possibility of building a 
correct and high-performance MPI-IO driver.  Our goal is 
to build a new pNFS ROMIO driver that provides outstand-
ing performance for the most common HPC workloads, i.e., 
using checkpoints to read and write large amounts of data.

Unfortunately, the POSIX interface continues to pose chal-
lenges.  While the NFSv4 protocol has the tools to satisfy 
MPI-IO semantics, there is currently no revalidation inter-
face in POSIX.  As a result, the pNFS driver must rely on 
any number of other possible revalidation mechanisms to 
implement the SYNC/BARRIER/SYNC construct:

Direct I/O: The NFS client can avoid revalidation issues by 
simply avoiding data caching all together.  This may be fine 
for some workloads, but the lack of readahead or writeback 
caching could severely hinder performance.

Locking: Now that NFSv4 has a well-defined locking pro-
tocol with clear semantics, a pNFS driver can use fcntl
locks in a similar manner as the UFS driver.  One side affect 
is that NFSv4.1 fault tolerance semantics mandate that all 
data must be written to disk on release of a write lock.  This 
may create a performance penalty when the amount of writ-
ten data is less than the size of the server cache.

Forced cache revalidation and invalidation:  No portable 
revalidation mechanism exists, but a non-portable IOCTL 
function could force the NFS client to revalidate its data 

cache.  In the longer term, if this mechanism proves useful, 
a standard interface can hopefully be adopted [13].

Force Data Eviction: Another non-portable technique is to 
evict cached data from memory.  For example, Linux sup-
ports allows applications to clear all non-dirty pages from 
the page cache with ‘sysctl -w vm.drop_caches=1’.  
This achieves effectively the same behavior as using Direct 
I/O, but allows limited use of the read and writeback cache.

6. RELATED WORK
Previous work with pNFS focuses on micro-benchmarks 
and parallel applications that did not rely on the 
SYNC/BARRIER/SYNC construct [11, 12, 18]. 

Numerous high-performance file systems support MPI-IO 
[2, 19-21].  Some ADIO drivers continue to optimize I/O 
performance, e.g., Lustre and PanFS per-file striping para-
meters.

The HPC community has started an effort to extend the 
POSIX I/O API to improve clustering, parallelism, and high 
concurrency applications [13].  This effort may end up be-
ing critically important in providing platform-independent 
ADIO drivers.

GPFS implemented several optimizations for MPI-IO, in-
cluding data shipping, improved sparse data access, and 
double buffering [20].  These optimizations are built direct-
ly into GPFS instead of ROMIO.  While this can simplify 
the application interface, allowing additional enhancements 
at the ROMIO layer such as striping parameters would also 
be beneficial.

Scalable NAS solutions are emerging to provide scalable 
and heterogeneous access to large data stores [22-24].  
These systems support NFSv3 and CIFS clients through 
multiple server endpoints.  While these architectures im-
prove scalability and can provide automatic failover, load
balancing among the servers is uncoordinated and relies on 
out-of-band mechanisms such as DNS.  In addition, forcing 
each client to perform all I/O through a single server creates 
hot spots, which limits available client bandwidth.
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7. CONCLUDING REMARKS
HPC pushes the limits of modern computing, but continues 
to use rigid storage infrastructures. The emergence of 
pNFS promises to boost the capabilities of commodity file 
access.  pNFS offers the promise of using a commodity 
client to access thousands of servers and petabytes of data.  
Ongoing work to align pNFS, MPI-IO, and POSIX consis-
tency semantics directly addresses the needs of the high-
performance community by seeking to overcome limitations 
that fetter portability, correctness, and performance.
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